期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Preliminary seismic anisotropy in the upper crust of the south segment of Xiaojiang faults and its tectonic implications 被引量:5
1
作者 Ying Li Yuan Gao +1 位作者 Yutao Shi Peng Wu 《Earthquake Science》 2021年第1期64-76,共13页
The Xiaojiang faults,striking north-tosouth(NS),and the Honghe faults,striking north-to-west(NW),are first-order block boundaries that intersect to form a concentrated stress zone at an acute angle in the southern par... The Xiaojiang faults,striking north-tosouth(NS),and the Honghe faults,striking north-to-west(NW),are first-order block boundaries that intersect to form a concentrated stress zone at an acute angle in the southern part of the Sichuan-Yunnan rhombic block(SYB).It is also a crucial zone for material escaping from the Tibetan Plateau(TP)due to the collision between the Indian Plate and the Eurasian Plate.In December 2017,the Institute of Earthquake Forecasting of the China Earthquake Administration(CEA)deployed a linear temporary seismic broadband array,the Honghe-Xiaojiang temporary Seismic Array(HX Array),across first-order block boundaries in the southern SYB.By using the waveform data of small earthquakes recorded by stations in the HX Array across Xiaojiang faults from 2017 to 2019,and by permanent seismic stations of the China National Earthquake Networks from 2012 to 2019,this paper adopts the systematic analysis method of shear-wave splitting(SWS),SAM method,to obtain preliminary results for seismic anisotropy in the upper crust.The study area can be divided into two subzones according to the spatial distribution of the directions of polarization of the fast shear-wave(PFS)at the stations:the northern zone(zone A,where the HX Array is located)and the southern zone(zone B,to the south of the HX Array).The results show that the directions of the PFS at stations in zone A were highly consistent,dominant in the NE direction,correlated with the in-situ principal compressive stress,and were seemingly unaffected by the Xiaojiang faults.The directions of the PFS as recorded at stations in zone B were more complicated,and were dominant in the NS direction parallel to that of the regional principal compressive stress.This suggests the joint influence of complex tectonics and regional stress in this narrow wedge area.By referring to the azimuthal anisotropy derived from seismic ambient noise in the southeast margin of the TP,the NS direction of the PFS in the middle and lower crust,and its EW direction in the upper mantle,this paper concludes that azimuthal anisotropy in the upper crust differed from that in the lower crust in the south segment of Xiaojiang faults,at least beneath the observation area,and azimuthal anisotropy in the crust was different from that in the upper mantle.The results support the pattern of deformation of ductile flow in the lower crust,and the decoupling between the upper and lower crusts as well as that between the crust and the mantle in the study area.The crustal directions of the PFS appeared to be independent of the Xiaojiang faults,suggesting that the influence of the South China block on the SYB passed through the Xiaojiang faults to the Yimen region.The results of this study indicate that anisotropic studies based on data on the dense temporary seismic array can yield clearer tectonic information,and reveal the complex spatial distribution of stress and deformation in the upper crust of the south segment of Xiaojiang faults. 展开更多
关键词 xiaojiang faults temporary seismic array shearwave splitting anisotropy in the upper crust stress
下载PDF
Crustal structure in Xiaojiang fault zone and its vicinity 被引量:14
2
作者 Chunyong Wang Hai Lou +3 位作者 Xili Wang Jiazheng Qin Runhai Yang Jinming Zhao 《Earthquake Science》 CSCD 2009年第4期347-356,共10页
Based on the integrative interpretation of travel-time data and amplitude information obtained from the deep seismic sounding experiment on the Chuxiong-Luoping profile, eastern Yunnan province, carried out in January... Based on the integrative interpretation of travel-time data and amplitude information obtained from the deep seismic sounding experiment on the Chuxiong-Luoping profile, eastern Yunnan province, carried out in January of 2005, we present a 2-D P wave velocity structure along the profile. The crustal structure shows remarkable contrasts between the two sides of the Xiaojiang fault zone, although the whole profile is situated within the Yangtze platform. The average P wave velocities of the crust on the west and east sides of the fault zone are 6.21 km/s and 6.32 km/s, respectively, and the crustal thicknesses are 41 km and 45 km, respectively. These results imply that the crust to the east of the Xiaojiang fault zone presents characteristics of crustal structure in a stable platform, while the crust to the west is complicated with a lower velocity zone in middle of the upper crust. The average velocity of 6.21 km/s is lower than the global continental crustal average (6.30 km/s), indicating that the region is tectonically active. According to the lateral variation of velocity and depth of interfaces (including the Moho), it is inferred that the Xiaojiang fault zone has cut through the whole crust. It is also deduced that existence of low velocity zone in middle of the upper crust is conducive to the south-southeastern sliding of the Sichuan- Yunnan (Chuan-Dian) rhombus block. 展开更多
关键词 xiaojiang fault zone crustal structure deep seismic sounding SEISMICITY low velocity zone
下载PDF
Late Quaternary Large Earthquakes on the Western Branch of the Xiaojiang Fault and Their Tectonic Implications 被引量:7
3
作者 LI Xi RAN Yongkang +3 位作者 CHEN Lichun WU Fuyao MA Xinquan CAO Jun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第5期1516-1530,共15页
The Xiaojiang fault is a major active left-lateral fault along the southeastern margin of the Tibetan Plateau.The largest historical earthquake in Yunnan Province, with a magnitude 8 and a mean coseismic left-lateral ... The Xiaojiang fault is a major active left-lateral fault along the southeastern margin of the Tibetan Plateau.The largest historical earthquake in Yunnan Province, with a magnitude 8 and a mean coseismic left-lateral displacement of ~ 6.9 m, occurred on the western branch of the Xiaojiang fault.Studying this fault is important in understanding current deformation and kinematic characteristics of the Tibetan Plateau.Activities and stretches have been well undertaken on the Xiaojiang fault, while paleoseismic research work is always the weak link on this fault.To investigate the paleoseismic history and large earthquake activity of the Xiaojiang fault, we opened a large trench at the northern edge of Caohaizi sag pond on the western branch of the Xiaojiang fault.Six paleoseismic events have been identified, and named E1 through E6 from the oldest to the youngest.Charcoal and woods are abundant, 20 samples were dated to constrain the ages of the paleoseismic events at 40 000–36 300 BC, 35 400–24 800 BC, 9 500 BC–AD 500, AD 390–720, AD 1120–1620 and AD 1750–present.We associate the youngest event E6 with the 1833 M8 earthquake.Events E4, E5 and E6 show a continuous record of the western strand of the Xiaojiang fault in the late Holocene, with a average recurrence interval of 370–480 yr.Large earthquake recurrence in the late Holocene is far less than the recurrence of 2000–4000 yr posed in previous studies.Thus, the seismic hazard on the Xiaojiang fault should be reevaluated.Furthermore, the irregular recurrence of large earthquakes on the Xiaojiang fault and other faults in the Xianshuihe-Xiaojiang system, indicates the uneven southeastward extrusion of the Sichuan-Yunnan block along the southeastern margin of the Tibetan Plateau. 展开更多
关键词 xiaojiang fault sag pond large trench PALEOEARTHQUAKE recurrence interval Sichuan-Yunnan block
下载PDF
The formation and evolution of the Qiaojia pull-apart basin,North Xiaojiang Fault Zone,Southwest China 被引量:4
4
作者 LI Tian-tao PEI Xiang-jun +1 位作者 HUANG Run-qiu JIN Long-de 《Journal of Mountain Science》 SCIE CSCD 2016年第6期1096-1106,共11页
Sedimentary sequences with drastic thickening over short distances have been observed in Qiaojia County,Yunnan Province,Southwest China.These are related to a pull-apart basin controlled by the Xiaojiang strike-slip f... Sedimentary sequences with drastic thickening over short distances have been observed in Qiaojia County,Yunnan Province,Southwest China.These are related to a pull-apart basin controlled by the Xiaojiang strike-slip fault.Our field investigations include determining the surface characteristics of the Qiaojia basin which consists of three terrace sequences and a series of alluvial fans.Several drill holes were used to reveal the internal structure of the basin.The results suggest that the basinal sediments are over 300 m thick.From bottom to top,they can be classified into five different units.We inferred that the units of lacustrine sediments are deposited in a paleolake which was formed by a paleo-landslide.Accelerator mass spectrometry radiocarbon dating(AMS ^(14)C dating) was used to estimate the ages of the terrace and lacustrine sediments.We use the results to infer that the paleo-lake has existed about 15,000 years and that the Qiaojia basin was uplifted at an average rate of 3.3 mm/a.Furthermore,we then model the evolution process of the basin and interpreted 6 phases of development. 展开更多
关键词 Pull-apart basin xiaojiang fault STRIKE-SLIP EVOLUTION TERRACE Dammed lake
下载PDF
Inversion of Stress Fields in the Middle Section of the Xiaojiang Fault and Its Adjacent Area 被引量:2
5
作者 Lin Xiangdong Xu Ping +2 位作者 Wu Minjie Gao Ling Wu Anxu 《Earthquake Research in China》 2011年第1期82-91,共10页
With waveform data of 613 earthquakes with ML ≥ 2. 5 in the middle section of the Xiaojiang fault and its adjacent area which occurred during January,1998 to September 2007,focal mechanisms were calculated by the dir... With waveform data of 613 earthquakes with ML ≥ 2. 5 in the middle section of the Xiaojiang fault and its adjacent area which occurred during January,1998 to September 2007,focal mechanisms were calculated by the direct wave amplitude ratio of S /P in the vertical component and their characteristics were analyzed. According to regional tectonic features of the middle section of the Xiaojiang fault and its adjacent area,the study region was partitioned into two zones with the Xiaojiang fault as the boundary,e. g. zone A and zone B (including the Xiaojiang fault). In order to research the faults stress in detail,the Xiaojiang fault zone was picked out for independent analysis. The study region was also partitioned into 1°× 1° cells with a 0. 5° step. The stress fields of zone A,B and the fault zone were inverted with the FMSI method (Gephart,1990). The results show that first, the faults are mainly of strike-slip in the middle section and its adjacent area,amounting to 81. 28%,69. 23% and 72. 97% in the A,B and fault zones,respectively. Secondly,the stress inversion also indicates that the directions of maximum principal stress σ1 in the A, B,and fault zones are approximately NNW,NWW and NWW,the stress action is mainly horizontal,and strike-slip faulting is dominant in the study area. On the other hand,the direction of the principal stress field in the central Yunnan block changed from NNW to NWW,however,in the region between the Yuanmou and Pudu River faults,the azimuth of the main compressive stress shows that the north-south slip is obvious. While the direction of the main compressive stress of the Xiaojiang fault zone is nearly NW; in the east of the Xiaojiang fault,the direction of principal compressive stress is NW to NNW in the eastern Yunnan block. 展开更多
关键词 Middle section of the xiaojiang fault Focal mechanism Stress field inversion
下载PDF
Preliminary analysis of the shear-wave splitting observations from the Qiaojia seismic array 被引量:2
6
作者 Hao Liang Zhen Fu +1 位作者 Chunlai Li Lisheng Xu 《Earthquake Science》 2020年第2期82-97,共16页
A total of 351 shear-wave splitting results at 25 stations were obtained from the seismic data recorded in period of January,2013 to December,2016,by a broadband seismic array deployed in the northern segment of Xiaoj... A total of 351 shear-wave splitting results at 25 stations were obtained from the seismic data recorded in period of January,2013 to December,2016,by a broadband seismic array deployed in the northern segment of Xiaojiang Fault Zone(n-XJFZ).Meanwhile,the stress field of the n-XJFZ was determined by inverting 140 focal mechanism solutions of the small earthquakes within the study area which were recorded in the same period.This determination confirmed a compressive stress in NW-SE orientation and an extensional stress in the NE-SW orientation,with little difference from those released by previous studies.The shear-wave splitting results show a spatial complexity in polarization orientation,different from one site to another.How-ever,the polarization orientations integrated for the subareas suggest that the fault trends seemingly played important roles.All the subareas bear two dominant orientations,N10°E and N90°E,both of which are different from the azimuths of the principal compressive stress,due to the fault distribution.The time delay averaged over the entire region is 4.56 ms/km,close to that of the upper boundary of the generally accepted interval worldwide but larger than those in most of the investigated regions in the Chinese mainland,which probably implies an alignment of more micro-cracks in the n-XJFZ.Interestingly,the 2014 Ms6.5 Ludian earthquake was found to have caused a variation in the time delays of the slow shear waves within the study area though its epicenter was outside.This earthquake resulted in an evident drop of the time delays remaining for 4 months,however,lifted a bit the time-delay level with respect to that prior to the earthquake. 展开更多
关键词 seismic array xiaojiang fault zone shear-wave splitting polarization orientation time delay
下载PDF
Crustal structure along the Zhenkang-Luxi deep seismic sounding profile in Yunnan derived from receiver functions 被引量:1
7
作者 Zhanyong Gao Yanna Zhao +1 位作者 Xiaoguo Deng Yudong Yang 《Geodesy and Geodynamics》 2018年第4期334-341,共8页
The crustal thicknesses and the Poisson’s ratios under the seismic stations can be calculated by receiver function method with H-κ stacking effectively. But the stacking results are affected to some extent by the av... The crustal thicknesses and the Poisson’s ratios under the seismic stations can be calculated by receiver function method with H-κ stacking effectively. But the stacking results are affected to some extent by the average crustal P-wave velocity. To eliminate this effect and get more accurate crustal structure along the Zhenkang-Luxi deep seismic sounding profile which lies in Yunnan Province, we calculate the receiver functions from the teleseismic events recorded by 11 temporary stations as well as 5 permanent ones along the profile and carry out the stacking with Vp obtained from the profile in this study. Our study shows that the crustal thicknesses along the Zhenkang-Luxi profile range from 34.8 km to 41.8 km with an average of 39 km. The crust is thicker in the middle part of the profile and thinner in both sides in general. Dramatic changes of crustal thickness about 3 km are detected across both the Lancangjiang fault and the Xiaojiang fault, which implies that these faults cut through the Moho. The lowest Poisson’s ratio under the stations is 0.22 and the highest is 0.27 with the mean of 0.25, which is lower than the global average value 0.27 in the continental crust. It suggests that most of the crust along the profile lacks mafic component, but contains more felsic substance. The low Poisson’s ratio also indicates that there is no satisfying condition for partial melting. We deduce that the material flow in the middle-lower crust in the southeastern margin of the Tibetan plateau may occur only in the north region of 24°N. 展开更多
关键词 Receiver function Crustal structure Lancangjiang fault xiaojiang fault Mid-lower crust flow
下载PDF
The mechanism of deep material transport and seismogenic environment of the Xiaojiang fault system revealed by 3-D magnetotelluric study 被引量:2
8
作者 Nian YU Xuben WANG +4 位作者 Dewei LI Xin LI Enci WANG Wenxin KONG Tianyang LI 《Science China Earth Sciences》 SCIE EI CSCD 2022年第6期1128-1145,共18页
The Xiaojiang fault system(XJFS), located to the southeast of the Tibetan Plateau, has a complicated tectonic history and is an ideal location to study the Tibetan Plateau in terms of its deep material transport mecha... The Xiaojiang fault system(XJFS), located to the southeast of the Tibetan Plateau, has a complicated tectonic history and is an ideal location to study the Tibetan Plateau in terms of its deep material transport mechanism and the effects of past tectonic events. In this study, broadband and long-period magnetotelluric data were collected above this fault system and inverted to build a 3-D resistivity model of the lithosphere. As shown in the model, at upper-middle crustal depths, three high-resistivity anomalies separate the strike-slip faults located in the study area, which may be the remnants of the Emeishan large igneous province that was destroyed and modified by Cenozoic crustal activity. The lower crust is characterized by significant lowresistivity anomalies that extend downward to the upper mantle. The low-resistivity anomalies in the upper crust may be caused by brines or/and conductive minerals(e.g., graphite and sulfides), and the possible reason for the low-resistivity anomalies that were imaged in the lower crust and upper mantle may be the presence of hydrogen in nominally anhydrous minerals and partial melts. According to the seismic activity distribution and resistivity structure, we propose dividing the seismic activity of the study area into three categories: tectonic earthquakes, earthquakes with no active faults on the surface, and other scattered earthquakes with no general features. Seismic activities are controlled by tectonic activities, fluid transportation, and the adjustment of the Earth's stress field. It is believed that there is a mutually reinforcing relationship between seismic activity and deep fluids. Fluids could lower the frictional force in faults, promote movement, and thus induce earthquakes;on the other hand,seismic activities and the long-term strike-slip movements of faults could generate heat and increase the connectivity of fluids,which decreases the strength of the crust and facilitates the flow of fluids. Based on the resistivity model, it is demonstrated that the present tectonic activity in the XJFS is complicated and characterized by rigid block extrusion along strike-slip faults in the upper crust, ductile deformation with channel flow in the lower crust, and the upwelling of mantle materials. In combination with previous studies, our results indicate that the weak crustal materials from the Tibetan Plateau are blocked by(1) the lithosphere modified by the Emeishan plume and(2) the South China block when flowing through the Sichuan-Yunnan block. Therefore,these weak materials turn to the southwest direction along the XJFS, then pass through the Red River fault and enter the Indochina block. 展开更多
关键词 The xiaojiang fault MAGNETOTELLURIC Seismogenic environment Emeishan mantle plume Crustal flow
原文传递
Shear wave velocity structure of the crust and upper mantle in Southeastern Tibet and its geodynamic implications 被引量:24
9
作者 Zhiqi ZHANG Huajian YAO Yan YANG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2020年第9期1278-1293,共16页
Southeastern Tibet,which has complex topography and strong tectonic activity,is an important area for studying the subsurface deformation of the Tibetan Plateau.Through the two-station method on 10-year teleseismic Ra... Southeastern Tibet,which has complex topography and strong tectonic activity,is an important area for studying the subsurface deformation of the Tibetan Plateau.Through the two-station method on 10-year teleseismic Rayleigh wave data from 132 permanent stations in the southeastern Tibetan Plateau,which incorporates ambient noise data,we obtain the interstation phase velocity dispersion data in the period range of 5–150s.Then,we invert for the shear wave velocity of the crust and upper mantle through the direct 3-D inversion method.We find two low-velocity belts in the mid-lower crust.One belt is mainly in the SongPan-GangZi block and northwestern part of the Chuan-Dian diamond block,whereas the other belt is mainly in the Xiaojiang fault zone and its eastern part,the Yunnan-Guizhou Plateau.The low-velocity belt in the Xiaojiang fault zone is likely caused by plastic deformation or partial melting of felsic rocks due to crustal thickening.Moreover,the significant positive radial anisotropy(VSH>VSV)around the Xiaojiang fault zone further enhances the amplitude of low velocity anomaly in our VSVmodel.This crustal low-velocity zone also extends southward across the Red River fault and farther to northern Vietnam,which may be closely related to heat sources in the upper mantle.The two low-velocity belts are separated by a high-velocity zone near the Anninghe-Zemuhe fault system,which is exactly in the inner and intermediate zones of the Emeishan large igneous province(ELIP).We find an obvious high-velocity body situated in the crust of the inner zone of the ELIP,which may represent maficultramafic material that remained in the crust when the ELIP formed.In the upper mantle,there is a large-scale low-velocity anomaly in the Indochina and South China blocks south of the Red River fault.The low-velocity anomaly gradually extends northward along the Xiaojiang fault zone into the Yangtze Craton as depth increases.Through our velocity model,we think that southeastern Tibet is undergoing three different tectonic modes at the same time:(1)the upper crust is rigid,and as a result,the tectonic mode is mainly rigid block extrusion controlled by large strike-slip faults;(2)the viscoplastic materials in the middlelower crust,separated by rigid materials related to the ELIP,migrate plastically southward under the control of the regional stress field and fault systems;and(3)the upper mantle south of the Red River fault is mainly controlled by large-scale asthenospheric upwelling and may be closely related to lithospheric delamination and the eastward subduction and retreat of the Indian plate beneath Burma. 展开更多
关键词 Southeastern Tibet Surface wave tomography Shear wave velocity structure xiaojiang fault system Emeishan large igneous province Asthenospheric upwelling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部