In the northwestern margin of the Youjiang basin(NWYB)in SW China,many Carlin-like gold deposits are highly antimony(Sb)-rich,and many vein-type Sb deposits contain much Au.These deposits have similar ages,host rocks,...In the northwestern margin of the Youjiang basin(NWYB)in SW China,many Carlin-like gold deposits are highly antimony(Sb)-rich,and many vein-type Sb deposits contain much Au.These deposits have similar ages,host rocks,ore-forming temperatures,ore-related alterations and ore mineral assemblages,but the Au and Sb metallogenic relations and their ore-forming process remain enigmatic.Here we investigate the large Qinglong Sb deposit in the NWYB,which has extensive sub-economic Au mineralization,and present a new metallogenic model based on in-situ trace elements(EPMA and LA-ICP-MS)and sulfur isotopes(NanoSIMS and fs-LA-MC-ICPMS)of the ore sulfides.At Qinglong,economic Sb ores contain coarse-grained stibnite,jasperoid quartz and fluorite,whilst the sub-economic Au–Sb ores comprise dominantly veined quartz,arsenian pyrite and fine-grained stibnite.Three generations of ore-related pyrite(Py1,Py2 and Py3)and two generations of stibnite(Stb1 and Stb2)are identified based on their texture,chemistry,and sulfur isotopes.The pre-ore Py1 is characterized by the lower ore element(Au,As,Sb,Cu and Ag)contents(mostly below the LA-ICP-MS detection limit)and Co/Ni ratios(average 0.31)than the ore-stage pyrites(Py2 and Py3),implying a sedimentary/diagenetic origin.The Py2 and Py3 have elevated ore element abundance(maximum As=6500 ppm,Au=22 ppm,Sb=6300 ppm,Cu=951 ppm,Ag=77 ppm)and Co/Ni ratios(average 1.84),and have positive As vs.Au–Sb–Cu–Ag correlations.Early-ore Stb1 has lower As(0.12–0.30 wt.%)than late-ore Stb2(0.91–1.20 wt.%).These features show that the progressive As enrichment in ore sulfides is accompanied by increasing Au,Sb,Cu and Ag with the hydrothermal evolution,thereby making As a good proxy for Au.As-rich,As-poor and As-free zones are identified via NanoSIMS mapping of the Au-bearing pyrite.The As-rich zones in the Qinglong Au-bearing pyrites(Py2 and Py3)and ore stibnites(Stb1 and Stb2)have narrowδ^(34)SH_(2)S ranges(-8.9‰to +4.1‰,average-3.1‰)and-2.9‰to +6.9‰,average + 1.3‰),respectively,indicating that the Au-rich and Sb-rich fluids may have had the same sulfur source.Published in-situ sulfur isotopic data of pyrite As-rich zones from other Carlin-like Au deposits(Shuiyindong,Taipingdong,Nayang,Getang and Lianhuashan)in the NWYB have similar ore-fluidδSH_(2)S values(-4.5‰to +6.7‰,average-0.6‰)to those of Qinglong.Therefore,we infer that the sulfur of both Au and Sb mineralization was derived from the same magmatic-related source(0±5‰)in the NWYB.Moreover,the core of pyrites(Py1)has variable S isotope fractionation(-18.9‰to +18.1‰,mostly +3‰to +12‰),suggesting that the higher-^(34)S H_(2)S was produced by bacterial sulfate reduction(BSR).The hydrothermal pyrite(Py2 and Py3)δ^(34)S values gradually decrease with increasing As concentrations,and ultimately,within the restricted range(-5‰to +5‰)in As-rich zones.This variation implies that the As-rich pyrite was formed through ongoing interactions of the magmatic-hydrothermal fluid with pre-existing sedimentary pyrites,causing the progressive decreasing δ^(34)S values with As content increase,Hence,the fluid/mineral interaction may have generated the observed variation in δ^(34)S and As contents.Overall,comparing the Au and Sb deposits in the NWYB,we favor a magmatic-related source for the Au–Sb–As-rich fluids,but the Au-and Sb-ore fluids were likely evolved at separate stages in the ore-forming system.展开更多
The Songxi deposit is a newly discovered large Ag (Sb) deposit. By using a suite of high-vacuum quadrupole gas mass spectrometer systems, the authors have recognized many kinds of light hydrocarbons in fluid inclusion...The Songxi deposit is a newly discovered large Ag (Sb) deposit. By using a suite of high-vacuum quadrupole gas mass spectrometer systems, the authors have recognized many kinds of light hydrocarbons in fluid inclusions of minerals. These hydrocarbons are mainly composed of C1-C4 saturated alkanes, while the contents of C2-C4 unsaturated alkenes and aromatic hydrocarbons are quite low, suggesting that the metallogenic processes have not been affected by magmatic activities. Chemical equilibrium studies show that these hydrocarbons may be a mixture of organic gases generated by microorganism activity and those by thermal cracking of type-n kerogens (kukersite) in sedimentary host rocks, and the former may constitute more than two-thirds, implying that microorganism might have played an important role in the metallogenesis. The equilibrium temperature of the latter is about 300℃, which is much higher than the geothermal temperature at the estimated depth of metallogenesis. Thus, the light hydrocarbons generated by thermal cracking of kerogens probably originated in the deep part of the sedimentary basins and then migrated through a long distance to shallower horizons of the basin. Based on the composition of light hydrocarbons in fluid inclusions, the authors infer that the Songxi deposit was formed in a continental rift. The analytical data presented in this paper support from one aspect the genetic model that the Songxi deposit may be a sedimentary hot brine transformed deposit instead of a submarine basic volcanic exhalation and low-medium temperature volcanic hydrothermal fluid filling deposit proposed by most previous researchers.展开更多
Some Au deposits in southern Anhui Province have recently been found to be closely associated with Late Mesozoic intrusions. Typical examples include the Huashan Au(Sb) deposit and Au deposits at Zhaojialing, Wuxi,and...Some Au deposits in southern Anhui Province have recently been found to be closely associated with Late Mesozoic intrusions. Typical examples include the Huashan Au(Sb) deposit and Au deposits at Zhaojialing, Wuxi,and Liaojia. In order to understand the mechanisms that led the formation of these Au deposits, we make detailed reviews on the geological characteristics of these Au deposits. Specifically, we present new LA-ICP-MS zircon U–Pb dating, along with elemental and Hf isotopic data from the Huashan Au(Sb) deposit. Our data suggests that the Huashan ore-related intrusions were emplaced during the Late Jurassic and Early Cretaceous periods(144–148 Ma). They are characterized by arc-magma features and high oxygen fugacity and are rich in inherited zircons. Zircon U–Pb ages and Lu–Hf isotopes from intrusions suggest that Proterozoic juvenile lithosphere is the main source of these intrusions. The regional geological history implies that lithosphere beneath southern Anhui was produced during a Proterozoic subduction and was fertilized with Au(Cu) in the process. Integrated with theresults of previous studies, we inferred that Late Mesozoic intrusions formed by the remelting of the lithosphere could provide the metal endowment for the Au-rich deposits in southern Anhui.展开更多
Low-temperature Sb(Au-Hg) deposits in South China account for more than 50% of the world’s Sb reserves,however,their genesis remains controversial.Here we report the first study that integrates U-Pb and Lu-Hf analysi...Low-temperature Sb(Au-Hg) deposits in South China account for more than 50% of the world’s Sb reserves,however,their genesis remains controversial.Here we report the first study that integrates U-Pb and Lu-Hf analysis by LA-(MC)-ICPMS and conventional(U-Th)/He analysis,all applied to single zircon crystals,in an attempt to constrain the origin and timing of world-class Sb(Au-Hg) deposits in Banxi(South China).Zircon separated from a quartz-stibnite ore and an altered country rock samples revealed similar U-Pb age spectra defining two major populations-Paleoproterozoic(~1900-2500 Ma) and Neoproterozoic(~770 Ma),which are characterized by variable εHf(t) values(-10.7 to 9.1 and-16.5 to 11.2,respectively) and Hf crustal model ages(TDMC)(2.48 to 3.24 Ga and 0.97 to 2.71 Ga,respectively).The U-Pb age and Hf isotopic features of the zircons are consistent with the Banxi Group in the region,indicating that the zircons involved in the low-temperature hydrothermal system were originally from the Banxi Group country rocks.Thirty-three mineralization-related zircon crystals yielded a mean(U-Th)/He age of 123.8±3.8 Ma,which is interpreted to represent the timing of the latest low-temperature mineralization stage of the Banxi Sb deposit.The combined U-Pb,Lu-Hf and(U-Th)/He data suggest that Precambrian basement rocks were the major contributors to the low-temperature mineralization,and that Early Cretaceous(130-120 Ma) could be the most important ore-forming epoch for the Sb deposits in South China.This study also demonstrates the analytical feasibility of integrated U-Pb-Lu-Hf-(U-Th)/He "triple-dating",all applied to single zircon crystals.This approach reveals the full evolution of zircon,from its origin of the magmatic source,through its crystallization and low-temperature cooling.Although this study demonstrates the usefulness of this integrated approach in dating low-temperature mineralization,it has great potential for zircon provenance and other studies that may benefit from the large amount of information that can be extracted from single zircon crystals.展开更多
Ore deposits (occurrences) of Au, As, Sb, Hg, etc. distributed in Southwest Guizhou constitute the important portion of the low-temperature metallogenic domain covering a large area in Southwest China, with the Carlin...Ore deposits (occurrences) of Au, As, Sb, Hg, etc. distributed in Southwest Guizhou constitute the important portion of the low-temperature metallogenic domain covering a large area in Southwest China, with the Carlin-type Au and Sb deposits being the most typical ones. In this paper the Au and Sb ore deposits are taken as the objects of study. Through the petrographic analysis, microthermomitric measurement and Raman spectrophic analysis of fluid inclusions in gangue minerals and research on the S and C isotopic compositions in the gold ore deposits we can reveal the sources of ore-forming materials and ore-forming fluids and the rules of ore fluid evolution. Ore deposits of Au, Sb, etc. are regionally classified as the products of ore fluid evolution, and their ore-forming materials and ore fluids were probably derived mainly from the deep interior of the Earth. Fluid inclusion studies have shown that the temperatures of Au mineralization are within the range of 170-361℃,the salinities are 0.35 wt%-8 wt% NaCl eq.; the temperatures of Sb mineralization are 129.4-214℃ and the salinities are 0.18 wt%- 3.23 wt% NaCl eq.; the ore-forming fluid temperatures and salinities tend to decrease progressively. In the early stage (Au metallogenic stage) the ore-forming fluids contained large amounts of volatile components such as CO2, CH4, N2 and H2S, belonging to the H2O-CO2-NaCl fluid system; in the late stage (Sb metallogenic stage) the ore-forming fluids belong to the Sb-bearing H2O-NaCl system. The primitive ore-forming fluids may have experienced at least two processes of immiscibility: (1) when early ore-bearing hydrothermal solutions passed through rock strata of larger porosity or fault broken zones, CO2, CH4, N2 would escape from them, followed by the release of pressure, resulting in pressure release and boiling of primitive homogenous fluids, thereafter giving rise to their phase separation, thus leading to Au unloading and mineralization; and (2) in the late stage (Sb metallogenic stage ) a large volume of meteoric water was involved in the ore-forming fluids, leading to fluid boiling as a result of their encounter, followed by the drop of fluid temperature. As a result, the dissolubility of Sb decreased so greatly that Sb was enriched and precipitated as ores. Due to differences in physic-chemical conditions between Au and Sb precipitates, Au and Sb were respectively precipitated in different structural positions, thus creating such a phenomenon of Au/Sb paragenesis and differentiation in space.展开更多
The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less...The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less researches have addressed these deposits,and the genesis of the Zhaxikang deposit is still controversial.Based on field investigation,petrographic,microthermometric,Laser Raman Microprobe(LRM) and SEM/EDS analyses of fluid,melt-fluid,melt and solid inclusions in quartz and beryl from pegmatite,this paper documents the characteristics and the evolution of primary magmatic fluid which was genetically related to greisenization,pegmatitization,and silification in the area.The results show that the primary magmatic fluids were derived from unmixing between melt and fluid and underwent a phase separation process soon after the exsolution.The primary magmatic fluids are of low salinity,high temperature,and can be approximated by the H_2O-NaCl-CO_2 system.The presence of Mn-Fe carbonate in melt-fluid inclusions and a Zn-bearing mineral(gahnite) trapped in beryl and in inclusions from pegmatite indicates high Mn,Fe,and Zn concentrations in the parent magma and magmatic fluids,and implies a genetic link between pegmatite and Pb-Zn-Sb mineralization.High B and F concentrations in the parent magma largely lower the solidus of the magma and lead to late fluid exsolution,thus the primary magmatic fluids related to pegmatite have much lower temperature than those in most porphyry systems.Boiling of the primary magmatic fluids leads to high-salinity and high-temperature fluids which have high capacity to transport Pb,Zn and Sb.The decrease in temperature and mixing with fluids from other sources may have caused the precipitation of Pb-Zn-Sn(Au) minerals in the distal fault systems surrounding the causative intrusion.展开更多
In October 2012,an evaluation using potential ecological hazard risk index was carried out on soil heavy metal pollution around AgSb deposit tailing areas in northeastern Guangdong. Results indicate that( i) soil heav...In October 2012,an evaluation using potential ecological hazard risk index was carried out on soil heavy metal pollution around AgSb deposit tailing areas in northeastern Guangdong. Results indicate that( i) soil heavy metal pollution is mainly Cd-Ni compound pollution,including Cd content 0. 31- 2. 66 mg / kg( average content is 1. 11 mg / kg),the situation of exceeding standard is serious( the rate of exceeding standard is 100%); the total potential ecological hazard risk index( RI) is between 50 and 300,and it is moderate pollution;( ii) in soil heavy metal content,only Ni and Cu are positively correlated. Since there is certain degree of Ni pollution in this deposit,the synergetic effect of Cu and Ni may deteriorate Ni pollution.展开更多
基金the National Natural Science Foundation of China(Grant No.41802107)Guizhou Scientific and Technology Fund(Grant No.QKHJC[2019]1315+2 种基金QKHJC[2019]1149H)China Postdoctoral Science Foundation(Grant No.2019M653495)the Talent Introduction Project of Guizhou University(Grant No.201772).
文摘In the northwestern margin of the Youjiang basin(NWYB)in SW China,many Carlin-like gold deposits are highly antimony(Sb)-rich,and many vein-type Sb deposits contain much Au.These deposits have similar ages,host rocks,ore-forming temperatures,ore-related alterations and ore mineral assemblages,but the Au and Sb metallogenic relations and their ore-forming process remain enigmatic.Here we investigate the large Qinglong Sb deposit in the NWYB,which has extensive sub-economic Au mineralization,and present a new metallogenic model based on in-situ trace elements(EPMA and LA-ICP-MS)and sulfur isotopes(NanoSIMS and fs-LA-MC-ICPMS)of the ore sulfides.At Qinglong,economic Sb ores contain coarse-grained stibnite,jasperoid quartz and fluorite,whilst the sub-economic Au–Sb ores comprise dominantly veined quartz,arsenian pyrite and fine-grained stibnite.Three generations of ore-related pyrite(Py1,Py2 and Py3)and two generations of stibnite(Stb1 and Stb2)are identified based on their texture,chemistry,and sulfur isotopes.The pre-ore Py1 is characterized by the lower ore element(Au,As,Sb,Cu and Ag)contents(mostly below the LA-ICP-MS detection limit)and Co/Ni ratios(average 0.31)than the ore-stage pyrites(Py2 and Py3),implying a sedimentary/diagenetic origin.The Py2 and Py3 have elevated ore element abundance(maximum As=6500 ppm,Au=22 ppm,Sb=6300 ppm,Cu=951 ppm,Ag=77 ppm)and Co/Ni ratios(average 1.84),and have positive As vs.Au–Sb–Cu–Ag correlations.Early-ore Stb1 has lower As(0.12–0.30 wt.%)than late-ore Stb2(0.91–1.20 wt.%).These features show that the progressive As enrichment in ore sulfides is accompanied by increasing Au,Sb,Cu and Ag with the hydrothermal evolution,thereby making As a good proxy for Au.As-rich,As-poor and As-free zones are identified via NanoSIMS mapping of the Au-bearing pyrite.The As-rich zones in the Qinglong Au-bearing pyrites(Py2 and Py3)and ore stibnites(Stb1 and Stb2)have narrowδ^(34)SH_(2)S ranges(-8.9‰to +4.1‰,average-3.1‰)and-2.9‰to +6.9‰,average + 1.3‰),respectively,indicating that the Au-rich and Sb-rich fluids may have had the same sulfur source.Published in-situ sulfur isotopic data of pyrite As-rich zones from other Carlin-like Au deposits(Shuiyindong,Taipingdong,Nayang,Getang and Lianhuashan)in the NWYB have similar ore-fluidδSH_(2)S values(-4.5‰to +6.7‰,average-0.6‰)to those of Qinglong.Therefore,we infer that the sulfur of both Au and Sb mineralization was derived from the same magmatic-related source(0±5‰)in the NWYB.Moreover,the core of pyrites(Py1)has variable S isotope fractionation(-18.9‰to +18.1‰,mostly +3‰to +12‰),suggesting that the higher-^(34)S H_(2)S was produced by bacterial sulfate reduction(BSR).The hydrothermal pyrite(Py2 and Py3)δ^(34)S values gradually decrease with increasing As concentrations,and ultimately,within the restricted range(-5‰to +5‰)in As-rich zones.This variation implies that the As-rich pyrite was formed through ongoing interactions of the magmatic-hydrothermal fluid with pre-existing sedimentary pyrites,causing the progressive decreasing δ^(34)S values with As content increase,Hence,the fluid/mineral interaction may have generated the observed variation in δ^(34)S and As contents.Overall,comparing the Au and Sb deposits in the NWYB,we favor a magmatic-related source for the Au–Sb–As-rich fluids,but the Au-and Sb-ore fluids were likely evolved at separate stages in the ore-forming system.
基金supported by the National Natural Science Foundation of China(grants 49502029,49928201 and 49773195)the Natural Sciences Foundation of Guangdong Province(No.970123)+3 种基金the Visiting Scholar Foundation of Labs in Universitiesthe Research Foundation of the State Key Laboratory for Mineral Deposits Research in Nanjing UniversityResearch Foundation of Young(originally translated as Youth)Teachers of the National Educational Department and the Training Program of Middle-aged and Young(originally translated as Medium-Youth)Teachers supported by the Lingnan Foundationsupported by the Trans-century Training Program Foundation for the Talents by the Ministry of Education
文摘The Songxi deposit is a newly discovered large Ag (Sb) deposit. By using a suite of high-vacuum quadrupole gas mass spectrometer systems, the authors have recognized many kinds of light hydrocarbons in fluid inclusions of minerals. These hydrocarbons are mainly composed of C1-C4 saturated alkanes, while the contents of C2-C4 unsaturated alkenes and aromatic hydrocarbons are quite low, suggesting that the metallogenic processes have not been affected by magmatic activities. Chemical equilibrium studies show that these hydrocarbons may be a mixture of organic gases generated by microorganism activity and those by thermal cracking of type-n kerogens (kukersite) in sedimentary host rocks, and the former may constitute more than two-thirds, implying that microorganism might have played an important role in the metallogenesis. The equilibrium temperature of the latter is about 300℃, which is much higher than the geothermal temperature at the estimated depth of metallogenesis. Thus, the light hydrocarbons generated by thermal cracking of kerogens probably originated in the deep part of the sedimentary basins and then migrated through a long distance to shallower horizons of the basin. Based on the composition of light hydrocarbons in fluid inclusions, the authors infer that the Songxi deposit was formed in a continental rift. The analytical data presented in this paper support from one aspect the genetic model that the Songxi deposit may be a sedimentary hot brine transformed deposit instead of a submarine basic volcanic exhalation and low-medium temperature volcanic hydrothermal fluid filling deposit proposed by most previous researchers.
基金supported by the National Key R&D Program of China(No.2016YFC0600404)the National Natural Science Foundation of China(Nos.41372087,41673040,41174043)the Project of Geological Science and Technology of Anhui Province(2014-K-04,2016-K-1)
文摘Some Au deposits in southern Anhui Province have recently been found to be closely associated with Late Mesozoic intrusions. Typical examples include the Huashan Au(Sb) deposit and Au deposits at Zhaojialing, Wuxi,and Liaojia. In order to understand the mechanisms that led the formation of these Au deposits, we make detailed reviews on the geological characteristics of these Au deposits. Specifically, we present new LA-ICP-MS zircon U–Pb dating, along with elemental and Hf isotopic data from the Huashan Au(Sb) deposit. Our data suggests that the Huashan ore-related intrusions were emplaced during the Late Jurassic and Early Cretaceous periods(144–148 Ma). They are characterized by arc-magma features and high oxygen fugacity and are rich in inherited zircons. Zircon U–Pb ages and Lu–Hf isotopes from intrusions suggest that Proterozoic juvenile lithosphere is the main source of these intrusions. The regional geological history implies that lithosphere beneath southern Anhui was produced during a Proterozoic subduction and was fertilized with Au(Cu) in the process. Integrated with theresults of previous studies, we inferred that Late Mesozoic intrusions formed by the remelting of the lithosphere could provide the metal endowment for the Au-rich deposits in southern Anhui.
基金This work was co-financed by the National Natural Science Foundation of China(Grant No.41502067)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(Grant No.CUG150612)+1 种基金supported by Australian Research Council Discovery funding scheme(DP160102427)a Curtin Research Fellowship
文摘Low-temperature Sb(Au-Hg) deposits in South China account for more than 50% of the world’s Sb reserves,however,their genesis remains controversial.Here we report the first study that integrates U-Pb and Lu-Hf analysis by LA-(MC)-ICPMS and conventional(U-Th)/He analysis,all applied to single zircon crystals,in an attempt to constrain the origin and timing of world-class Sb(Au-Hg) deposits in Banxi(South China).Zircon separated from a quartz-stibnite ore and an altered country rock samples revealed similar U-Pb age spectra defining two major populations-Paleoproterozoic(~1900-2500 Ma) and Neoproterozoic(~770 Ma),which are characterized by variable εHf(t) values(-10.7 to 9.1 and-16.5 to 11.2,respectively) and Hf crustal model ages(TDMC)(2.48 to 3.24 Ga and 0.97 to 2.71 Ga,respectively).The U-Pb age and Hf isotopic features of the zircons are consistent with the Banxi Group in the region,indicating that the zircons involved in the low-temperature hydrothermal system were originally from the Banxi Group country rocks.Thirty-three mineralization-related zircon crystals yielded a mean(U-Th)/He age of 123.8±3.8 Ma,which is interpreted to represent the timing of the latest low-temperature mineralization stage of the Banxi Sb deposit.The combined U-Pb,Lu-Hf and(U-Th)/He data suggest that Precambrian basement rocks were the major contributors to the low-temperature mineralization,and that Early Cretaceous(130-120 Ma) could be the most important ore-forming epoch for the Sb deposits in South China.This study also demonstrates the analytical feasibility of integrated U-Pb-Lu-Hf-(U-Th)/He "triple-dating",all applied to single zircon crystals.This approach reveals the full evolution of zircon,from its origin of the magmatic source,through its crystallization and low-temperature cooling.Although this study demonstrates the usefulness of this integrated approach in dating low-temperature mineralization,it has great potential for zircon provenance and other studies that may benefit from the large amount of information that can be extracted from single zircon crystals.
基金financially supported jointly by the State Science and Technology Supporting Program(2006BAB01A13)the Self-research Project funded by the State Key Laboratory of Ore Deposit Geochemistry(Ore Deposit Special Research Project 2008.3-2)Guizhou Provincial Bureau of Geology and Mineral Resource Exploration and Development[Qian Di Kuang Ke(2009)No.11]
文摘Ore deposits (occurrences) of Au, As, Sb, Hg, etc. distributed in Southwest Guizhou constitute the important portion of the low-temperature metallogenic domain covering a large area in Southwest China, with the Carlin-type Au and Sb deposits being the most typical ones. In this paper the Au and Sb ore deposits are taken as the objects of study. Through the petrographic analysis, microthermomitric measurement and Raman spectrophic analysis of fluid inclusions in gangue minerals and research on the S and C isotopic compositions in the gold ore deposits we can reveal the sources of ore-forming materials and ore-forming fluids and the rules of ore fluid evolution. Ore deposits of Au, Sb, etc. are regionally classified as the products of ore fluid evolution, and their ore-forming materials and ore fluids were probably derived mainly from the deep interior of the Earth. Fluid inclusion studies have shown that the temperatures of Au mineralization are within the range of 170-361℃,the salinities are 0.35 wt%-8 wt% NaCl eq.; the temperatures of Sb mineralization are 129.4-214℃ and the salinities are 0.18 wt%- 3.23 wt% NaCl eq.; the ore-forming fluid temperatures and salinities tend to decrease progressively. In the early stage (Au metallogenic stage) the ore-forming fluids contained large amounts of volatile components such as CO2, CH4, N2 and H2S, belonging to the H2O-CO2-NaCl fluid system; in the late stage (Sb metallogenic stage) the ore-forming fluids belong to the Sb-bearing H2O-NaCl system. The primitive ore-forming fluids may have experienced at least two processes of immiscibility: (1) when early ore-bearing hydrothermal solutions passed through rock strata of larger porosity or fault broken zones, CO2, CH4, N2 would escape from them, followed by the release of pressure, resulting in pressure release and boiling of primitive homogenous fluids, thereafter giving rise to their phase separation, thus leading to Au unloading and mineralization; and (2) in the late stage (Sb metallogenic stage ) a large volume of meteoric water was involved in the ore-forming fluids, leading to fluid boiling as a result of their encounter, followed by the drop of fluid temperature. As a result, the dissolubility of Sb decreased so greatly that Sb was enriched and precipitated as ores. Due to differences in physic-chemical conditions between Au and Sb precipitates, Au and Sb were respectively precipitated in different structural positions, thus creating such a phenomenon of Au/Sb paragenesis and differentiation in space.
基金financially supported by the State Basic Research Plan(973 project)(No.2011CB403100)IGCP/SIDA-600 project
文摘The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less researches have addressed these deposits,and the genesis of the Zhaxikang deposit is still controversial.Based on field investigation,petrographic,microthermometric,Laser Raman Microprobe(LRM) and SEM/EDS analyses of fluid,melt-fluid,melt and solid inclusions in quartz and beryl from pegmatite,this paper documents the characteristics and the evolution of primary magmatic fluid which was genetically related to greisenization,pegmatitization,and silification in the area.The results show that the primary magmatic fluids were derived from unmixing between melt and fluid and underwent a phase separation process soon after the exsolution.The primary magmatic fluids are of low salinity,high temperature,and can be approximated by the H_2O-NaCl-CO_2 system.The presence of Mn-Fe carbonate in melt-fluid inclusions and a Zn-bearing mineral(gahnite) trapped in beryl and in inclusions from pegmatite indicates high Mn,Fe,and Zn concentrations in the parent magma and magmatic fluids,and implies a genetic link between pegmatite and Pb-Zn-Sb mineralization.High B and F concentrations in the parent magma largely lower the solidus of the magma and lead to late fluid exsolution,thus the primary magmatic fluids related to pegmatite have much lower temperature than those in most porphyry systems.Boiling of the primary magmatic fluids leads to high-salinity and high-temperature fluids which have high capacity to transport Pb,Zn and Sb.The decrease in temperature and mixing with fluids from other sources may have caused the precipitation of Pb-Zn-Sn(Au) minerals in the distal fault systems surrounding the causative intrusion.
基金Supported by Science and Technology Planning Project of Guangdong Province(2012A030700006)Key Sci-tech Innovation Project for Institutions of Higher Education in Guangdong Province(cxzd 1132)Joint Natural Science Project of Meizhou and Jiaying University(2011KJM08)
文摘In October 2012,an evaluation using potential ecological hazard risk index was carried out on soil heavy metal pollution around AgSb deposit tailing areas in northeastern Guangdong. Results indicate that( i) soil heavy metal pollution is mainly Cd-Ni compound pollution,including Cd content 0. 31- 2. 66 mg / kg( average content is 1. 11 mg / kg),the situation of exceeding standard is serious( the rate of exceeding standard is 100%); the total potential ecological hazard risk index( RI) is between 50 and 300,and it is moderate pollution;( ii) in soil heavy metal content,only Ni and Cu are positively correlated. Since there is certain degree of Ni pollution in this deposit,the synergetic effect of Cu and Ni may deteriorate Ni pollution.