Water is usually considered to be a key limiting factor for the growth and reproduction of steppe plants in the Xilin River Basin, Nei Mongol. Foliar delta C-13 values, an indicator of long-term intercellular carbon d...Water is usually considered to be a key limiting factor for the growth and reproduction of steppe plants in the Xilin River Basin, Nei Mongol. Foliar delta C-13 values, an indicator of long-term intercellular carbon dioxide concentration and thus of water-use efficiency (WUE) in plants, were measured on Leymus chinensis (Trin.) Tzvel. and Cleistogenes squarrosa (Trin.) Keng. in six communities of different habitats in die Xilin River Basin. The foliar delta C-13 values of both species tended to increase with decreasing soil water content (SWC) and a significant negative correlation was found between foliar delta C-13 Values and SWC in different soil layers, indicating that the two species could change WUE according to water availability. We also found relatively constant leaf water contents (LWC) of the two species in different habitats. Our results implied that the two steppe species might have adapted to different soil water regimes either through adjusting stomatal conductance to get a proper WUE, or through enhancing the osmosis-regulating ability to keep a relatively stable LWC. Our findings could partially explain why the two plant species have a wide distribution range and become dominant in the Xilin River Basin.展开更多
Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in steppe region in Inner Mongolia, China is urgently needed. An intensive investigation of the temporal va...Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in steppe region in Inner Mongolia, China is urgently needed. An intensive investigation of the temporal varia-tions of δD and δ^18O in precipitation was conducted in 2007-2008 in the Xilin River Basin, Inner Mongolia in the northern China. The 6D and δ^18O values for 54 precipitation samples range from +1.1%o to -34.7%0 and -3.0%0 to -269%0, respectively. This wide range indicates that stable isotopes in precipitation are primarily controlled by differ-ent condensation mechanisms as a function of air temperature and varying sources of vapor. The relationship between δD and δ^18O defined a well constrained line given by δD = 7.896180 + 9.5, which is nearly identical to the Meteoric Water Line in the northern China. The temperature effect is clearly displayed in this area. The results of backward tra-jectory of each precipitation day show that the vapor of the precipitation in cold season (October to March) mainly originates from the west while the moisture source is more complicated in warm season (April to September). A light precipitation amount effect existes at the precipitation event scale in this area. The vapor source of precipitation with higher d-excesses are mainly from the west wind or neighboring inland area and precipitation with lower d-excesses from a monsoon source from the southeastern China.展开更多
This study conducted computer-aided image analysis of land use and land cover in Xilin River Basin, Inner Mongolia, using 4 sets of Landsat TM/ETM+ images acquired on July 31, 1987, August 11, 1991, Sep...This study conducted computer-aided image analysis of land use and land cover in Xilin River Basin, Inner Mongolia, using 4 sets of Landsat TM/ETM+ images acquired on July 31, 1987, August 11, 1991, September 27, 1997 and May 23, 2000, respectively. Primarily, 17 sub-class land cover types were recognized, including nine grassland types at community level: F.sibiricum steppe, S.baicalensis steppe, A.chinensis+ forbs steppe, A.chinensis+ bunchgrass steppe, A.chinensis+ Ar.frigida steppe, S.grandis+ A.chinensis steppe, S.grandis+ bunchgrass steppe, S.krylavii steppe, Ar.frigida steppe and eight non-grassland types: active cropland, harvested cropland, urban area, wetland, desertified land, saline and alkaline land, cloud, water body + cloud shadow. To eliminate the classification error existing among different sub-types of the same gross type, the 17 sub-class land cover types were grouped into five gross types: meadow grassland, temperate grassland, desert grassland, cropland and non-grassland. The overall classification accuracy of the five land cover types was 81.0% for 1987, 81.7% for 1991, 80.1% for 1997 and 78.2% for 2000.展开更多
Against the backdrop of global warming,climate extremes and drought events have become more severe,especially in arid and semi-arid areas.This study forecasted the characteristics of climate extremes in the Xilin Rive...Against the backdrop of global warming,climate extremes and drought events have become more severe,especially in arid and semi-arid areas.This study forecasted the characteristics of climate extremes in the Xilin River Basin(a semi-arid inland river basin)of China for the period of 2021–2100 by employing a multi-model ensemble approach based on three climate Shared Socioeconomic Pathway(SSP)scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5)from the latest Coupled Model Intercomparison Project Phase 6(CMIP6).Furthermore,a linear regression,a wavelet analysis,and the correlation analysis were conducted to explore the response of climate extremes to the Standardized Precipitation Evapotranspiration Index(SPEI)and Streamflow Drought Index(SDI),as well as their respective trends during the historical period from 1970 to 2020 and during the future period from 2021 to 2070.The results indicated that extreme high temperatures and extreme precipitation will further intensify under the higher forcing scenarios(SSP5-8.5>SSP2-4.5>SSP1-2.6)in the future.The SPEI trends under the SSP1-2.6,SSP2-4.5,and SSP5-8.5 scenarios were estimated as–0.003/a,–0.004/a,and–0.008/a,respectively,indicating a drier future climate.During the historical period(1970–2020),the SPEI and SDI trends were–0.003/a and–0.016/a,respectively,with significant cycles of 15 and 22 a,and abrupt changes occurring in 1995 and 1996,respectively.The next abrupt change in the SPEI was projected to occur in the 2040s.The SPEI had a significant positive correlation with both summer days(SU)and heavy precipitation days(R10mm),while the SDI was only significantly positively correlated with R10mm.Additionally,the SPEI and SDI exhibited a strong and consistent positive correlation at a cycle of 4–6 a,indicating a robust interdependence between the two indices.These findings have important implications for policy makers,enabling them to improve water resource management of inland river basins in arid and semi-arid areas under future climate uncertainty.展开更多
文摘Water is usually considered to be a key limiting factor for the growth and reproduction of steppe plants in the Xilin River Basin, Nei Mongol. Foliar delta C-13 values, an indicator of long-term intercellular carbon dioxide concentration and thus of water-use efficiency (WUE) in plants, were measured on Leymus chinensis (Trin.) Tzvel. and Cleistogenes squarrosa (Trin.) Keng. in six communities of different habitats in die Xilin River Basin. The foliar delta C-13 values of both species tended to increase with decreasing soil water content (SWC) and a significant negative correlation was found between foliar delta C-13 Values and SWC in different soil layers, indicating that the two species could change WUE according to water availability. We also found relatively constant leaf water contents (LWC) of the two species in different habitats. Our results implied that the two steppe species might have adapted to different soil water regimes either through adjusting stomatal conductance to get a proper WUE, or through enhancing the osmosis-regulating ability to keep a relatively stable LWC. Our findings could partially explain why the two plant species have a wide distribution range and become dominant in the Xilin River Basin.
基金Under the auspices of Nation Basic Research Program of China(No.2007CB411502)German Science Foundation(Research Unit 536)Independent Research Project from State Key Laboratory of Cryospheric Science(No.SKLCS-ZZ-2010-02)
文摘Under the increasing pressure of water shortage and steppe degradation, information on the hydrological cycle in steppe region in Inner Mongolia, China is urgently needed. An intensive investigation of the temporal varia-tions of δD and δ^18O in precipitation was conducted in 2007-2008 in the Xilin River Basin, Inner Mongolia in the northern China. The 6D and δ^18O values for 54 precipitation samples range from +1.1%o to -34.7%0 and -3.0%0 to -269%0, respectively. This wide range indicates that stable isotopes in precipitation are primarily controlled by differ-ent condensation mechanisms as a function of air temperature and varying sources of vapor. The relationship between δD and δ^18O defined a well constrained line given by δD = 7.896180 + 9.5, which is nearly identical to the Meteoric Water Line in the northern China. The temperature effect is clearly displayed in this area. The results of backward tra-jectory of each precipitation day show that the vapor of the precipitation in cold season (October to March) mainly originates from the west while the moisture source is more complicated in warm season (April to September). A light precipitation amount effect existes at the precipitation event scale in this area. The vapor source of precipitation with higher d-excesses are mainly from the west wind or neighboring inland area and precipitation with lower d-excesses from a monsoon source from the southeastern China.
基金Knowledge Innovation Project of CAS No.KZCX02-308+1 种基金 The NASA Land Use and Land Cover Change Program No.NAG5-11160
文摘This study conducted computer-aided image analysis of land use and land cover in Xilin River Basin, Inner Mongolia, using 4 sets of Landsat TM/ETM+ images acquired on July 31, 1987, August 11, 1991, September 27, 1997 and May 23, 2000, respectively. Primarily, 17 sub-class land cover types were recognized, including nine grassland types at community level: F.sibiricum steppe, S.baicalensis steppe, A.chinensis+ forbs steppe, A.chinensis+ bunchgrass steppe, A.chinensis+ Ar.frigida steppe, S.grandis+ A.chinensis steppe, S.grandis+ bunchgrass steppe, S.krylavii steppe, Ar.frigida steppe and eight non-grassland types: active cropland, harvested cropland, urban area, wetland, desertified land, saline and alkaline land, cloud, water body + cloud shadow. To eliminate the classification error existing among different sub-types of the same gross type, the 17 sub-class land cover types were grouped into five gross types: meadow grassland, temperate grassland, desert grassland, cropland and non-grassland. The overall classification accuracy of the five land cover types was 81.0% for 1987, 81.7% for 1991, 80.1% for 1997 and 78.2% for 2000.
基金funded by the Central Guidance on Local Science and Technology Development Fund of Inner Mongolia Autonomous Region,China(2022ZY0153)the“One Region Two Bases”Supercomputing Capacity Building Project of Inner Mongolia University,China(21300-231510).
文摘Against the backdrop of global warming,climate extremes and drought events have become more severe,especially in arid and semi-arid areas.This study forecasted the characteristics of climate extremes in the Xilin River Basin(a semi-arid inland river basin)of China for the period of 2021–2100 by employing a multi-model ensemble approach based on three climate Shared Socioeconomic Pathway(SSP)scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5)from the latest Coupled Model Intercomparison Project Phase 6(CMIP6).Furthermore,a linear regression,a wavelet analysis,and the correlation analysis were conducted to explore the response of climate extremes to the Standardized Precipitation Evapotranspiration Index(SPEI)and Streamflow Drought Index(SDI),as well as their respective trends during the historical period from 1970 to 2020 and during the future period from 2021 to 2070.The results indicated that extreme high temperatures and extreme precipitation will further intensify under the higher forcing scenarios(SSP5-8.5>SSP2-4.5>SSP1-2.6)in the future.The SPEI trends under the SSP1-2.6,SSP2-4.5,and SSP5-8.5 scenarios were estimated as–0.003/a,–0.004/a,and–0.008/a,respectively,indicating a drier future climate.During the historical period(1970–2020),the SPEI and SDI trends were–0.003/a and–0.016/a,respectively,with significant cycles of 15 and 22 a,and abrupt changes occurring in 1995 and 1996,respectively.The next abrupt change in the SPEI was projected to occur in the 2040s.The SPEI had a significant positive correlation with both summer days(SU)and heavy precipitation days(R10mm),while the SDI was only significantly positively correlated with R10mm.Additionally,the SPEI and SDI exhibited a strong and consistent positive correlation at a cycle of 4–6 a,indicating a robust interdependence between the two indices.These findings have important implications for policy makers,enabling them to improve water resource management of inland river basins in arid and semi-arid areas under future climate uncertainty.