Flash flood hazard mapping is a supporting component of non-structural measures for flash flood prevention. Pilot case studies are necessary to develop more practicable methods for the technical support systems of fla...Flash flood hazard mapping is a supporting component of non-structural measures for flash flood prevention. Pilot case studies are necessary to develop more practicable methods for the technical support systems of flash flood hazard mapping. In this study, the headwater catchment of the Xiapu River Basin in central China was selected as a pilot study area for flash flood hazard mapping. A conceptual distributed hydrological model was developed for flood calculation based on the framework of the Xinanjiang model, which is widely used in humid and semi-humid regions in China. The developed model employs the geomorphological unit hydrograph method, which is extremely valuable when simulating the overland flow process in ungauged catchments, as compared with the original Xinanjiang model. The model was tested in the pilot study area, and the results agree with the measured data on the whole. After calibration and validation, the model is shown to be a useful tool for flash flood calculation. A practicable method for flash flood hazard mapping using the calculated peak discharge and digital elevation model data was presented, and three levels of flood hazards were classified. The resulting flash flood hazard maps indicate that the method successfully predicts the spatial distribution of flash flood hazards, and it can meet the current requirements in China.展开更多
基金supported by the Key Project in the National Science and Technology Pillar Program during the Twelfth Five-Year Plan Period(Grant No.2012BAK10B04)the Specific Research Fund of the China Institute of Water Resources and Hydropower Research(Grant No.JZ0145B032014)
文摘Flash flood hazard mapping is a supporting component of non-structural measures for flash flood prevention. Pilot case studies are necessary to develop more practicable methods for the technical support systems of flash flood hazard mapping. In this study, the headwater catchment of the Xiapu River Basin in central China was selected as a pilot study area for flash flood hazard mapping. A conceptual distributed hydrological model was developed for flood calculation based on the framework of the Xinanjiang model, which is widely used in humid and semi-humid regions in China. The developed model employs the geomorphological unit hydrograph method, which is extremely valuable when simulating the overland flow process in ungauged catchments, as compared with the original Xinanjiang model. The model was tested in the pilot study area, and the results agree with the measured data on the whole. After calibration and validation, the model is shown to be a useful tool for flash flood calculation. A practicable method for flash flood hazard mapping using the calculated peak discharge and digital elevation model data was presented, and three levels of flood hazards were classified. The resulting flash flood hazard maps indicate that the method successfully predicts the spatial distribution of flash flood hazards, and it can meet the current requirements in China.