In order to understand the effect of river impoundment on carbon dynamics, a large reservoir in a subtropical area, the Xinanjiang Reservoir, was investigated in detail. CO_2 emissions from the water–air interface wa...In order to understand the effect of river impoundment on carbon dynamics, a large reservoir in a subtropical area, the Xinanjiang Reservoir, was investigated in detail. CO_2 emissions from the water–air interface was studied, as was organic carbon burial in sediment. The results show a significant seasonal difference in CO_2 emissions. River impoundment led to the enhancement of aquatic photosynthesis, generating large amounts of authigenic organic carbon that was then buried in sediment.展开更多
基金funded by the National Natural Science Foundation of China(No.41573064)the National Key Research and Development Program of China(No.2016YFA0601003)
文摘In order to understand the effect of river impoundment on carbon dynamics, a large reservoir in a subtropical area, the Xinanjiang Reservoir, was investigated in detail. CO_2 emissions from the water–air interface was studied, as was organic carbon burial in sediment. The results show a significant seasonal difference in CO_2 emissions. River impoundment led to the enhancement of aquatic photosynthesis, generating large amounts of authigenic organic carbon that was then buried in sediment.