The crystal structure of CaSrFe<sub>0.75</sub>Co<sub>0.75</sub>Mn<sub>0.5</sub>O<sub>6−δ</sub> is investigated through neutron diffraction techniques in this study. The...The crystal structure of CaSrFe<sub>0.75</sub>Co<sub>0.75</sub>Mn<sub>0.5</sub>O<sub>6−δ</sub> is investigated through neutron diffraction techniques in this study. The material is synthesized using a solid-state synthesis method at a temperature of 1200˚C. Neutron diffraction data is subjected to Rietveld refinement, and a comparative analysis with X-ray diffraction (XRD) data is performed to unravel the structural details of the material. The findings reveal that the synthesized material exhibits a cubic crystal structure with a Pm-3m phase. The neutron diffraction results offer valuable insights into the arrangement of atoms within the lattice, contributing to a comprehensive understanding of the material’s structural properties. This research enhances our knowledge of CaSrFe0.75</sub>Co0.75</sub>Mn0.5</sub>O6−δ</sub>, with potential implications for its applications in various technological and scientific domains.展开更多
The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mecha...The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mechanical properties in Al-Si-Mg alloys. But intermetallic compounds in cast Al-Si-Mg alloy intermetallics are often misidentified in previous metallurgical studies. It was described as many different compounds, such as AlFeSi, Al8Fe2Si, Al5(Fe, Mn)3Si2 and so on. For the purpose of solving this problem, the intermetallic compounds in cast Al-Si alloys containing 0.5% Mg were investigated in this study. The iron-rich compounds in Al-Si-Mg casting alloys were characterized by optical microscope(OM), scanning electron microscope(SEM), energy dispersive X-ray spectrometer(EDS), electron backscatter diffraction(EBSD) and X-ray powder diffraction(XRD). The electron backscatter diffraction patterns were used to assess the crystallographic characteristics of intermetallic compounds. The compound which contains Fe/Mg-rich particles with coarse morphologies was Al8FeMg3Si6 in the alloy by using EBSD. The compound belongs to hexagonal system, space group P6_2m, with the lattice parameter a=0.662 nm, c=0.792 nm. The β-phase is indexed as tetragonal Al3FeSi2, space group I4/mcm, a=0.607 nm and c=0.950 nm. The XRD data indicate that Al8FeMg3Si6 and Al3FeSi2 are present in the microstructure of Al-7Si-Mg alloy, which confirms the identification result of EBSD. The present study identified the iron-rich compound in Al-Si-Mg alloy, which provides a reliable method to identify the intermetallic compounds in short time in Al-Si-Mg alloy. Study results are helpful for identification of complex compounds in alloys.展开更多
Cold worked and annealed supersaturated Cu-2.65Ni-0.6Si and Cu-2.35Ni-0.6Si-0.6Cr alloys were studied. The microstructural parameters evolution, including crystallite size, root mean square strain and dislocation dens...Cold worked and annealed supersaturated Cu-2.65Ni-0.6Si and Cu-2.35Ni-0.6Si-0.6Cr alloys were studied. The microstructural parameters evolution, including crystallite size, root mean square strain and dislocation density was analyzed using Materials Analysis Using Diffraction software (MAUD). The parameters for both alloys have typical values of cold deformed and subsequently annealed copper based alloy. A net change of the crystallite size, root mean square strain and dislocation density values of the alloys aged at 450 °C for 2.5-3 h seems corresponding to the recovery and recrystallization processes. Addition of Cr as quaternary element did not lead to any drastic changes of post deformation or ageing microstructural parameters and hence of recovery-recrystallization kinetics.展开更多
Fitting of full X-ray diffraction patterns is an effective method for quantifying abundances during X-ray diffraction (XRD) analyses. The method is based on the principal that the observed diffraction pattern is the s...Fitting of full X-ray diffraction patterns is an effective method for quantifying abundances during X-ray diffraction (XRD) analyses. The method is based on the principal that the observed diffraction pattern is the sum of the individual phases that compose the sample. By adding an internal standard (usually corundum) to both the observed patterns and to those for individual pure phases (standards), all patterns can all be normalized to an equivalent intensity based on the internal standard intensity. Using least-squares refinement, the individual phase proportions are varied until an optimal match is reached. As the fitting of full patterns uses the entire pattern, including background, disordered and amorphous phases are explicitly considered as individual phases, with their individual intensity profiles or “amorphous humps” included in the refinement. The method can be applied not only to samples that contain well-ordered materials, but it is particularly well suited for samples containing amorphous and/or disordered materials. In cases with extremely disordered materials where no crystal structure is available for Rietveld refinement or there is no unique intensity area that can be measured for a traditional RIR analysis, full-pattern fitting may be the best or only way to readily obtain quantitative results. This approach is also applicable in cases where there are several coexisting highly disordered phases. As all phases are considered as discrete individual components, abundances are not constrained to sum to 100%.展开更多
The chemical structure of heavy oil fractions obtained by liquid-solid adsorption chromatography was character-ized by 1 H nuclear magnetic resonance and X-ray diffraction.The molecular weight and molecular formula of...The chemical structure of heavy oil fractions obtained by liquid-solid adsorption chromatography was character-ized by 1 H nuclear magnetic resonance and X-ray diffraction.The molecular weight and molecular formula of asphaltene molecules were estimated by combining 1 H nuclear magnetic resonance and X-ray diffraction analyses,and were also ob-tained from vapor pressure osmometry and elemental analysis.Heteroatoms,such as S,N,and O atoms,were considered in the construction of average molecular structure of heavy oils.Two important structural parameters were proposed,including the number of alkyl chain substituents to aromatic rings and the number of total rings with heteroatoms.Ultimately,the av-erage molecular structures of polycyclic aromatics,heavy resins and asphaltene molecules were constructed.The number of α-,β-,γ-,and aromatic hydrogen atoms of the constructed average molecular structures fits well with the number of hydro-gen atoms derived from the experimental spectral data.展开更多
The bauxite mineral obtained from Araku, Vishakapatnam district of Andhra Pradesh, India is used in the present work. Structural characterization was performed by X-ray diffraction (XRD). The mineral was found to be g...The bauxite mineral obtained from Araku, Vishakapatnam district of Andhra Pradesh, India is used in the present work. Structural characterization was performed by X-ray diffraction (XRD). The mineral was found to be gibbsite in phase. The transitional metal ions present were investigated using electron paramagnetic resonance (EPR) and optical absorption spectra. The EPR results suggest that Fe3+ has replaced Al3+ in the unit cell of bauxite. The optical absorption spectrum is due to Fe3+ which indicates that it is in distorted octahedral environment. The near-infrared (NIR) spectrum is due to water fundamentals and combination overtones, which confirm the formula of the compound. The impurities in the mineral are identified using spectroscopic techniques.展开更多
文摘The crystal structure of CaSrFe<sub>0.75</sub>Co<sub>0.75</sub>Mn<sub>0.5</sub>O<sub>6−δ</sub> is investigated through neutron diffraction techniques in this study. The material is synthesized using a solid-state synthesis method at a temperature of 1200˚C. Neutron diffraction data is subjected to Rietveld refinement, and a comparative analysis with X-ray diffraction (XRD) data is performed to unravel the structural details of the material. The findings reveal that the synthesized material exhibits a cubic crystal structure with a Pm-3m phase. The neutron diffraction results offer valuable insights into the arrangement of atoms within the lattice, contributing to a comprehensive understanding of the material’s structural properties. This research enhances our knowledge of CaSrFe0.75</sub>Co0.75</sub>Mn0.5</sub>O6−δ</sub>, with potential implications for its applications in various technological and scientific domains.
基金supported by National Natural Science Foundation of China (Grant No. 50864002)Guangxi Provincial Natural Science Foundation of China (Grant No. 0991001)
文摘The Al-Si-Mg alloy which can be strengthened by heat treatment is widely applied to the key components of aerospace and aeronautics. Iron-rich intermetallic compounds are well known to be strongly influential on mechanical properties in Al-Si-Mg alloys. But intermetallic compounds in cast Al-Si-Mg alloy intermetallics are often misidentified in previous metallurgical studies. It was described as many different compounds, such as AlFeSi, Al8Fe2Si, Al5(Fe, Mn)3Si2 and so on. For the purpose of solving this problem, the intermetallic compounds in cast Al-Si alloys containing 0.5% Mg were investigated in this study. The iron-rich compounds in Al-Si-Mg casting alloys were characterized by optical microscope(OM), scanning electron microscope(SEM), energy dispersive X-ray spectrometer(EDS), electron backscatter diffraction(EBSD) and X-ray powder diffraction(XRD). The electron backscatter diffraction patterns were used to assess the crystallographic characteristics of intermetallic compounds. The compound which contains Fe/Mg-rich particles with coarse morphologies was Al8FeMg3Si6 in the alloy by using EBSD. The compound belongs to hexagonal system, space group P6_2m, with the lattice parameter a=0.662 nm, c=0.792 nm. The β-phase is indexed as tetragonal Al3FeSi2, space group I4/mcm, a=0.607 nm and c=0.950 nm. The XRD data indicate that Al8FeMg3Si6 and Al3FeSi2 are present in the microstructure of Al-7Si-Mg alloy, which confirms the identification result of EBSD. The present study identified the iron-rich compound in Al-Si-Mg alloy, which provides a reliable method to identify the intermetallic compounds in short time in Al-Si-Mg alloy. Study results are helpful for identification of complex compounds in alloys.
文摘Cold worked and annealed supersaturated Cu-2.65Ni-0.6Si and Cu-2.35Ni-0.6Si-0.6Cr alloys were studied. The microstructural parameters evolution, including crystallite size, root mean square strain and dislocation density was analyzed using Materials Analysis Using Diffraction software (MAUD). The parameters for both alloys have typical values of cold deformed and subsequently annealed copper based alloy. A net change of the crystallite size, root mean square strain and dislocation density values of the alloys aged at 450 °C for 2.5-3 h seems corresponding to the recovery and recrystallization processes. Addition of Cr as quaternary element did not lead to any drastic changes of post deformation or ageing microstructural parameters and hence of recovery-recrystallization kinetics.
文摘Fitting of full X-ray diffraction patterns is an effective method for quantifying abundances during X-ray diffraction (XRD) analyses. The method is based on the principal that the observed diffraction pattern is the sum of the individual phases that compose the sample. By adding an internal standard (usually corundum) to both the observed patterns and to those for individual pure phases (standards), all patterns can all be normalized to an equivalent intensity based on the internal standard intensity. Using least-squares refinement, the individual phase proportions are varied until an optimal match is reached. As the fitting of full patterns uses the entire pattern, including background, disordered and amorphous phases are explicitly considered as individual phases, with their individual intensity profiles or “amorphous humps” included in the refinement. The method can be applied not only to samples that contain well-ordered materials, but it is particularly well suited for samples containing amorphous and/or disordered materials. In cases with extremely disordered materials where no crystal structure is available for Rietveld refinement or there is no unique intensity area that can be measured for a traditional RIR analysis, full-pattern fitting may be the best or only way to readily obtain quantitative results. This approach is also applicable in cases where there are several coexisting highly disordered phases. As all phases are considered as discrete individual components, abundances are not constrained to sum to 100%.
基金the funding of the National Basic Research Program of China (Grant No.2006CB202505)
文摘The chemical structure of heavy oil fractions obtained by liquid-solid adsorption chromatography was character-ized by 1 H nuclear magnetic resonance and X-ray diffraction.The molecular weight and molecular formula of asphaltene molecules were estimated by combining 1 H nuclear magnetic resonance and X-ray diffraction analyses,and were also ob-tained from vapor pressure osmometry and elemental analysis.Heteroatoms,such as S,N,and O atoms,were considered in the construction of average molecular structure of heavy oils.Two important structural parameters were proposed,including the number of alkyl chain substituents to aromatic rings and the number of total rings with heteroatoms.Ultimately,the av-erage molecular structures of polycyclic aromatics,heavy resins and asphaltene molecules were constructed.The number of α-,β-,γ-,and aromatic hydrogen atoms of the constructed average molecular structures fits well with the number of hydro-gen atoms derived from the experimental spectral data.
文摘The bauxite mineral obtained from Araku, Vishakapatnam district of Andhra Pradesh, India is used in the present work. Structural characterization was performed by X-ray diffraction (XRD). The mineral was found to be gibbsite in phase. The transitional metal ions present were investigated using electron paramagnetic resonance (EPR) and optical absorption spectra. The EPR results suggest that Fe3+ has replaced Al3+ in the unit cell of bauxite. The optical absorption spectrum is due to Fe3+ which indicates that it is in distorted octahedral environment. The near-infrared (NIR) spectrum is due to water fundamentals and combination overtones, which confirm the formula of the compound. The impurities in the mineral are identified using spectroscopic techniques.