A series of YAG:Ce,Mn transparent ceramics were prepared via a solid-state reaction-vacuum sintering method.The effects of various Mn^2+–Si4+pair doping levels on the structure,transmittance,and luminescence properti...A series of YAG:Ce,Mn transparent ceramics were prepared via a solid-state reaction-vacuum sintering method.The effects of various Mn^2+–Si4+pair doping levels on the structure,transmittance,and luminescence properties were systematically investigated.These transparent ceramics have average grain sizes of 10–16μm,clean grain boundaries,and excellent transmittance up to 83.4%at 800 nm.Under the excitation of 460 nm,three obvious emission peaks appear at 533,590,and 745 nm,which can be assigned to the transition 5 d→4 f of Ce^3+and 4 T1→6 A1 of Mn^2+.Thus,the Mn^2+–Si4+pairs can effectively modulate the emission spectrum by compensating broad orange-red and red spectrum component to yield high quality warm white light.After the optimized YAG:Ce,Mn transparent ceramic packaged with blue light-emitting diode(LED)chips,correlated color temperature(CCT)as low as 3723 K and luminous efficiency(LE)as high as 96.54 lm/W were achieved,implying a very promising candidate for application in white light-emitting diodes(WLEDs)industry.展开更多
基金the CAS Priority Research program(XDB20010300,XDA21010204)National Natural Science Foundation of China(201501178)Natural Science Foundation of Fujian Province(2017H0048)。
文摘A series of YAG:Ce,Mn transparent ceramics were prepared via a solid-state reaction-vacuum sintering method.The effects of various Mn^2+–Si4+pair doping levels on the structure,transmittance,and luminescence properties were systematically investigated.These transparent ceramics have average grain sizes of 10–16μm,clean grain boundaries,and excellent transmittance up to 83.4%at 800 nm.Under the excitation of 460 nm,three obvious emission peaks appear at 533,590,and 745 nm,which can be assigned to the transition 5 d→4 f of Ce^3+and 4 T1→6 A1 of Mn^2+.Thus,the Mn^2+–Si4+pairs can effectively modulate the emission spectrum by compensating broad orange-red and red spectrum component to yield high quality warm white light.After the optimized YAG:Ce,Mn transparent ceramic packaged with blue light-emitting diode(LED)chips,correlated color temperature(CCT)as low as 3723 K and luminous efficiency(LE)as high as 96.54 lm/W were achieved,implying a very promising candidate for application in white light-emitting diodes(WLEDs)industry.