Spectral terms and J-spectral multiplet of low-spin 4f105d configuration of Er3+ were obtained with the method of ligand field theory. According to the selection rules for dipole transitions, the excitation spectr...Spectral terms and J-spectral multiplet of low-spin 4f105d configuration of Er3+ were obtained with the method of ligand field theory. According to the selection rules for dipole transitions, the excitation spectra of Er3+ doped in LiYF4 in vacuum ultraviolet region (120~160 nm) of the spectrum were theoretically interpreted by applying the crystal field model, and the six bands were assigned to the spin-allowed transitions from the ground state (4I15/2) to J-spectral multiplet of low-spin 4f105d configuration of Er3+ion.展开更多
The Er^3+/Yb^3+ co-doped TeO2-Nb2O5-Li2O glass is prepared by conventional melting method, and its upconversion spectra are measured. The intense green upconversion luminescence upon excitation with a 976 nm laser d...The Er^3+/Yb^3+ co-doped TeO2-Nb2O5-Li2O glass is prepared by conventional melting method, and its upconversion spectra are measured. The intense green upconversion luminescence upon excitation with a 976 nm laser diode is observed with the naked eyes. The dependence of luminescence intensity on the ratio of Yb^3+/Er^3+ is discussed in detail, and the relationship between the ratio of green luminescence intensity to red luminescence intensity and the ratio of Yb^3+/Er^3+ is also studied, The luminescence intensity increases with the ratio of Yb^3+/Er^3+ increasing. The ratio of Yb^3+/Er^3+ plays a more important role than the concentration of Er^3+ in determining the upconversion luminescence intensity. The ratio of green luminescence intensity to red luminescence intensity reaches a maximum when ratio of Yb^3+/Er^3+ is 3. Thus the glass could be one of the potential candidates for LD pumping solid-state lasers.展开更多
文摘Spectral terms and J-spectral multiplet of low-spin 4f105d configuration of Er3+ were obtained with the method of ligand field theory. According to the selection rules for dipole transitions, the excitation spectra of Er3+ doped in LiYF4 in vacuum ultraviolet region (120~160 nm) of the spectrum were theoretically interpreted by applying the crystal field model, and the six bands were assigned to the spin-allowed transitions from the ground state (4I15/2) to J-spectral multiplet of low-spin 4f105d configuration of Er3+ion.
基金Project supported by the National Natural Science Foundation of China (Grant No 60307004) and the Science and Technology Program of Guangzhou, Guangdong province, China (Grant No 2004Z2-D0131).
文摘The Er^3+/Yb^3+ co-doped TeO2-Nb2O5-Li2O glass is prepared by conventional melting method, and its upconversion spectra are measured. The intense green upconversion luminescence upon excitation with a 976 nm laser diode is observed with the naked eyes. The dependence of luminescence intensity on the ratio of Yb^3+/Er^3+ is discussed in detail, and the relationship between the ratio of green luminescence intensity to red luminescence intensity and the ratio of Yb^3+/Er^3+ is also studied, The luminescence intensity increases with the ratio of Yb^3+/Er^3+ increasing. The ratio of Yb^3+/Er^3+ plays a more important role than the concentration of Er^3+ in determining the upconversion luminescence intensity. The ratio of green luminescence intensity to red luminescence intensity reaches a maximum when ratio of Yb^3+/Er^3+ is 3. Thus the glass could be one of the potential candidates for LD pumping solid-state lasers.