The yield behavior of metallic glasses was studied. Three yield criteria, including von Mises yield criterion, Mohr-Coulomb yield criterion and the unified yield criterion were used to describe the yield phenomena of ...The yield behavior of metallic glasses was studied. Three yield criteria, including von Mises yield criterion, Mohr-Coulomb yield criterion and the unified yield criterion were used to describe the yield phenomena of the metallic glasses. Two classes of the experimental data were chosen to draw the yield loci using the unified yield criterion. It is shown that the unified yield criterion can be used to describe the yield behavior of the metallic glasses no matter whether the metallic glasses show strength- different effect or non-strength-different effect. Almost all the widely accepted yield criteria are the subsets of the unified yield criterion if the intermediate principle stress and/or the intermediate principle shear stress are not considered at all.展开更多
As a new attempt, local canning compression was applied in order to implement large plastic deformation of nickel-titanium shape memory alloy (NiTi SMA) at room temperature. The plastic mechanics of local canning co...As a new attempt, local canning compression was applied in order to implement large plastic deformation of nickel-titanium shape memory alloy (NiTi SMA) at room temperature. The plastic mechanics of local canning compression of NiTi SMA was analyzed according to the slab method as the well as plastic yield criterion. Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) were used to study the microstructural evolution as well as deformation behavior of NiTi samples under local canning compression. Increasing the hydrostatic pressure with the increase in the outer diameters of the steel cans is responsible for suppressing the initiation and growth of the micro-cracks, which contributes to enhancing the plasticity ofNiTi SMA and avoiding the occurrence of brittle fracture. Plastic deformation of NiTi SMA under a three-dimensional compressive stress state meets von-Mises yield criterion at the true strains ranging from about 0.15 to 0.50, while in the case of larger plastic strain, von-Mises yield criterion is unable to be met since the amorphous phase arises in the deformed NiTi sample.展开更多
The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. Th...The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. The solutions for the mechanical properties of plane strain bending are derived, which are adapted for various kinds of non-strength differential materials and can be degenerated to those based on the Tresca, von Mises, and twin-shear yield criteria. The dependences of the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane on different yield criteria and Poisson’s ratios are discussed. The results show that the influences of different yield criteria and Poisson’s ratio on the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane of the curved beam are significant. Once the value of bis obtained by experiments, the yield criterion and the corresponding solution for the materials of interest are then determined.展开更多
The problem considered in this short note is the limit load determination of a vertical rock slope.The classical limit theorem is employed with the use of adaptive finite elements and nonlinear programming to determin...The problem considered in this short note is the limit load determination of a vertical rock slope.The classical limit theorem is employed with the use of adaptive finite elements and nonlinear programming to determine upper and lower bound limit loads of a Hoek-Brown vertical rock slope.The objective function of the mathematical programming problem is such as to optimize a boundary load,which is known as the limit load,resembling the ultimate bearing capacity of a strip footing.While focusing on the vertical slope,parametric studies are carried out for several dimensionless ratios such as the dimensionless footing distance ratio,the dimensionless height ratio,and the dimensionless rock strength ratio.A comprehensive set of design charts is presented,and failure envelopes shown with the results explained in terms of three identified failure mechanisms,i.e.the face,the toe,and the Prandtl-type failures.These novel results can be used with great confidence in design practice,in particularly noting that the current industry-based design procedures for the presented problem are rarely found.展开更多
In Haigh Westergaard stress space linear combination of twin shear stress and Tresca yield functions is called the mean yield (MY) criterion. The mathematical relationship of the criterion and its plastic work rate ...In Haigh Westergaard stress space linear combination of twin shear stress and Tresca yield functions is called the mean yield (MY) criterion. The mathematical relationship of the criterion and its plastic work rate done per unit volume were derived. A generalized worked example of slab forging was analyzed by the criterion and its corresponding plastic work rate done per unit volume. Then, the precision of the solution was compared with those by Mises and Twin shear stress yield criterions, respectively. It turned out that the calculated results by MY criterion were in good agreement with those by Mises criterion.展开更多
According to the load-structure method, the wall rock with lining can bear the load caused by the surrounding rock, and the rock resistant coefficient (RRC) is a key parameter for evaluating the capacity of this wall ...According to the load-structure method, the wall rock with lining can bear the load caused by the surrounding rock, and the rock resistant coefficient (RRC) is a key parameter for evaluating the capacity of this wall rock. Based on the Mohr-Coulomb yield criterion, this paper develops a formula for calculating the RRC, which has been applied to the real engi-neering project, such as Xiamen Xiang’an East Passage Underwater Tunnel Project. The fact shows that this formula is helpful for designers to determine the RRC value.展开更多
Using the twin shear stress yield criterion, the surface integral of the co-line vectors, and the integration depending on upper limit, Kobayashi's three-dimensional velocity field of rolling was analyzed and an anal...Using the twin shear stress yield criterion, the surface integral of the co-line vectors, and the integration depending on upper limit, Kobayashi's three-dimensional velocity field of rolling was analyzed and an analytical expression of rolling torque and single force was obtained. Through redoing the same experiment of rolling pure lead as Sims, the calculated results by the above expression were compared with those of Kobayashi and Sims formulae. The results show that the twin shear stress yield criterion is available for rolling analysis and the calculated results by the new formula are a little higher than those by Kobayashi and Sims ones if the reduction ratio is less than 30%.展开更多
A generalized yield criterion is proposed based on the metai plastic deformation mechanics and the fundamental formula in theory of plasticity. Using the generalized yield criterion, the reason is explained that Mises...A generalized yield criterion is proposed based on the metai plastic deformation mechanics and the fundamental formula in theory of plasticity. Using the generalized yield criterion, the reason is explained that Mises yield criterion and Tresca yield criterion do not completely match with experimental data. It has been shown that the yield criteria of ductile metals depend not only on the quadratic invariant of the deviatoric stress tensor J2, but also on the cubic invariant of the deviatoric stress tensor J3 and the ratio of the yield stress in pure shear to the yield stress in uniaxial tension κ/σs. The reason that Mises yield criterion and Tresca yield criterion are not in good agreement with the experimental data is that the effect of J3 and κ/σs is neglected.展开更多
Currently, for some complex plastic deformations, the analytical solution can not be obtained by using Mises yield criterion, because Mises yield criterion is nine dimensions, the velocity field is complex, and the so...Currently, for some complex plastic deformations, the analytical solution can not be obtained by using Mises yield criterion, because Mises yield criterion is nine dimensions, the velocity field is complex, and the solving methods are not innovative. Corresponding solutions of these problems are that yield criterion is linearized to reduce the variable numbers, and the velocity field and the solving methods are reasonably simplified, respectively. In this paper, a new linear yield criterion--mean yield(MY) criterion and inner-product of strain rate vector are used to analytically solve 3D forging taking into account bugling of sides. The velocity field is expressed as a vector in three dimensions, and rotation and divergence are applied to confirm that the velocity field is kinematically admissible. Then, the corresponding strain rate tensor of the velocity field is transformed into principal one by making the determinant of coefficients of the tensor cubic equation be zero. By using MY criterion, the plastic power is term by term integrated and summed according to inner-product of strain rate vector. An upper bound analytical solution is obtained for the forging, and verified by a pure lead press test. The test result turns out that the total pressure calculated by MY criterion is higher by 2.5%-15% than measuring value. In addition, a measuring formula of bulging parameter (a) is proposed, but the values of a measured by the formula are lower than those optimized by the golden section search. The total pressure calculated by MY criterion is compared with the ones by twin shear, Trasca yield, and Mises yield criterion. The comparing result shows that the total pressure calculated by MY criterion is slightly higher than the mean value of that by twin shear and Trasca yield criterion, and lower than that by Mises yield criterion, but more close to that by Mises yield criterion compared with that by other two. The proposed analytical solving methods can be effectively used to other complex plastic deformation, simplifying the solving process and obtaining the reasonable results.展开更多
A novel yield criterion based on CPB06 considering anisotropic and tension-compression asymmetric behaviors of magnesium alloys was derived and proposed(called M_CPB06).This yield criterion can simultaneously predict ...A novel yield criterion based on CPB06 considering anisotropic and tension-compression asymmetric behaviors of magnesium alloys was derived and proposed(called M_CPB06).This yield criterion can simultaneously predict the yield stresses and the Lankford ratios at different angles(if any)under uniaxial tension,compression,equal-biaxial and equal-compression conditions.Then,in order to further describe the anisotropic strain-hardening characteristics of magnesium alloy,the proposed M_CPB06 criterion was further evolved to the M_CPB06ev model by expressing the parameters of the M_CPB06 model as functions of the plastic strain.As the model was developed,the stresses and Lankford ratios of AZ31B and ZK61M magnesium alloys at different angles under tensile,compressive and through-thickness compressive conditions were used to calibrate the M_CPB06/M_CPB06ev and the existing CPB06ex2 model.Calibration results reveal that compared with the CPB06ex2 yield criterion with equal quantity of coefficients,the M_CPB06 criterion exhibits certain advancement,and meanwhile the M_CPB06ev model can relatively accurately predict the change of the yield locus with increase of the plastic strain.Finally,the M_CPB06ev model was developed through UMAT in LS-DYNA.Finite element simulations using the subroutine were conducted on the specimens of different angles to the rolling direction under tension and compression.Simulation results were highly consistent with the experimental results,demonstrating a good reliability and accuracy of the developed subroutine.展开更多
Based on Mohr-Coulomb (M-C) criterion, the parameters of Druker-Prager (D-P) criterion for geomaterial were determined under non-associated flow rule, and thus a new D-P type criterion was presented. Two assumptio...Based on Mohr-Coulomb (M-C) criterion, the parameters of Druker-Prager (D-P) criterion for geomaterial were determined under non-associated flow rule, and thus a new D-P type criterion was presented. Two assumptions were employed during the derivation: 1) principal strains by M-C model and D-P model are equal, and 2) the material is under plane strain condition. Based on the analysis of the surface on rt plane, it is found that the proposed D-P type criterion is better than the D-P criterion with M-C circumscribed circle or M-C inscribed circle, and is applicable for stress Lode angle less than zero. By comparing the predicted results with the test data of sand under plane strain condition and other D-P criteria, the proposed criterion is verified and agrees well with the test data, which is further proved to be better than other D--P type criteria in certain range of Lode angle. The criterion was compiled into a finite difference package FLAC3D by user-subroutine, and was used to analyze the stability of a slope by strength reduction method. The predicted slope safety factor from the proposed criterion agrees well with that by Spencer method, and it is more accurate than that from classic D-P criteria.展开更多
Spalling of pillar ribs has been a major hazard in the mining industry for decades.In the absence of rib support guidelines,accidents have continued to occur in recent years.Developing effective support guidelines req...Spalling of pillar ribs has been a major hazard in the mining industry for decades.In the absence of rib support guidelines,accidents have continued to occur in recent years.Developing effective support guidelines requires a complete understanding of complex pillar damage mechanisms.Continuum models represent a convenient tool for analyzing this problem,but the behavior of such models is dependent of the choice of the constitutive model.In this study,a recently proposed constitutive model was used to simulate the rib fracturing process in a longwall chain pillar at West Cliff mine.After calibration,the model was able to capture the rib displacement profiles for multiple locations of the longwall face and the stress evolution 4 m into the pillar.The rib bolts in the model were found to be yielding over 60% of their length under the headgate loading condition.The model also predicted a steady damage accumulation in the rib for certain face locations,which is consistent with the description of the rib at the site.Damage was localized along the upper part of the pillar and underscored the role that the dirt band played in controlling rib deterioration at the site.The ability of the numerical model to replicate field measurements provides confidence in the capabilities of the new constitutive model.Finally,the need of using multi-point calibration is highlighted by comparing the results of the calibrated model to an alternative model calibrated to a smaller amount of data.展开更多
Many experimental results show that a wide class of ductile materials obey often nonlinear behavior, thus it is important to propose a nonlinear criterion describing nonlinear behavior of ductile material. A new nonli...Many experimental results show that a wide class of ductile materials obey often nonlinear behavior, thus it is important to propose a nonlinear criterion describing nonlinear behavior of ductile material. A new nonlinear yield criterion was proposed which gives a series of new failure criteria, establishes a relationship among various failure criteria, and encompasses previous yield criteria as special cases or approximations. The criterion is capable of being expressed in a simple mathematical expression and through a particular physical concept, it also agree with some experimental data. It may therefore serve as a possible admissible isotropic yield criterion.展开更多
This work aims at determining the overall response of a two-phase elastoplastic composite to isotropic loading. The composite under investigation consists of elastic particles embedded in an elastic perfectly plastic ...This work aims at determining the overall response of a two-phase elastoplastic composite to isotropic loading. The composite under investigation consists of elastic particles embedded in an elastic perfectly plastic matrix governed by the Mohr-Coulomb yield criterion and a non-associated plastic flow rule. The composite sphere assemblage model is adopted, and closed-form estimates are derived for the effective elastoplastic properties of the composite either under tensile or compressive isotropic loading. In the case when elastic particles reduce to voids, the composite in question degenerates into a porous elastoplastic material. The results obtained in the present work are of interest, in particular, for soil mechanics.展开更多
Inspired by Cardano's method for solving cubic scalar equations, the addi- tive decomposition of spherical/deviatoric tensor (DSDT) is revisited from a new view- point. This decomposition simplifies the cubic tenso...Inspired by Cardano's method for solving cubic scalar equations, the addi- tive decomposition of spherical/deviatoric tensor (DSDT) is revisited from a new view- point. This decomposition simplifies the cubic tensor equation, decouples the spher- ical/deviatoric strain energy density, and lays the foundation for the von Mises yield criterion. Besides, it is verified that under the precondition of energy decoupling and the simplest form, the DSDT is the only possible form of the additive decomposition with physical meanings.展开更多
In this paper a linearized and unified yield crierion of metals is presented, which is in a form of a set of linear functions with two pararneters. The parameters are ex- pressed in terms of tension yield stress and ...In this paper a linearized and unified yield crierion of metals is presented, which is in a form of a set of linear functions with two pararneters. The parameters are ex- pressed in terms of tension yield stress and so-called “shear-stretch ratio” and can bereadily determined from experimental data. It is shown that in stress space the set of yield functions is a set of polygons with twelve edges located between the Tresca’s hexagon and twin-shear-stress hexagon ̄[1]. In this paper the present yield function isused to analyse the prestressiap loose running fit cylinders.展开更多
The correction in the derivation of the Gurson yield criterion is reported. Aprerequisite kine-matical condition ignored in Gurson's paper is imposed, and a parameter (C_1) ,which was unreasonably set to zero, is ...The correction in the derivation of the Gurson yield criterion is reported. Aprerequisite kine-matical condition ignored in Gurson's paper is imposed, and a parameter (C_1) ,which was unreasonably set to zero, is restored.展开更多
The study results of the internal friction character of geomaterials conclude that the internal friction exists in mechanical elements all the time having a direction opposite to the shear stress,and the deformation f...The study results of the internal friction character of geomaterials conclude that the internal friction exists in mechanical elements all the time having a direction opposite to the shear stress,and the deformation failure mechanism of geomaterials greatly differs from that of metals. For metals,the failure results from shear stresses make the crystal structure slip; whereas for geomaterials,owing to its attribute of granular structures,their deformation follows the friction law,it is the co-action of shear stresses and perpendicular stresses that makes grains overcome the frictions between them,thus leading to the final failure of relative sliding.Therefore,on the basis of the cognition above,a triple shear energy criterion is proposed. Its corresponding Drucker-Prager criterion for geomaterials is also given. The new criterion can be rewritten to the Mohr-Coulomb criterion by neglecting the effect of the intermediate principal stress,and to the Mises criterion by not taking the internal friction angle into consideration. Then the studies of yield criteria commonly used are conducted systematically from the points of stress,strain and energy of geomaterials. The results show that no matter which expression form of stress,strain or energy is used for the yield criterion,the essence is the same and the triple shear energy yield criterion is the unified criterion of materials. Finally,the experimental verification is conducted in connection with the practical application of the triple shear energy yield criterion in an engineering project,and the calculation result shows that the Mohr-Coulomb criterion which only takes the single shear surface into account is more conservative than the energy criterion that does consider the effect of triple shear surfaces.展开更多
When the Drucker Prager yield criterion is used, the MSC/NASTRAN program frequently predicts noticeable errors. The relevant part of NASTRAN Handbook was checked and some errors in the elasto plastics theory used in...When the Drucker Prager yield criterion is used, the MSC/NASTRAN program frequently predicts noticeable errors. The relevant part of NASTRAN Handbook was checked and some errors in the elasto plastics theory used in NASTRAN were detected in this paper. The procurement to prove these errors was verified by numerical calculation.展开更多
For the sake of solving the problem that it is difficult to be integrated for the Mises specific plastic power due to its nonlinearity,a new linear criterion,named the globally optimal approximation criterion,is const...For the sake of solving the problem that it is difficult to be integrated for the Mises specific plastic power due to its nonlinearity,a new linear criterion,named the globally optimal approximation criterion,is constructed by the polygonal approximation to the Mises circle.The new criterion is proved to be the linear function of the principal stress componentsσ1,σ2 andσ3 and the trajectory of it on theπ-plane is a non-equiangular but equilateral dodecagon intersecting the Mises circle.The theoretical results of the current criterion described by the Lode stress parameters are in excellent accordance with the experimental results.Meanwhile,according to the trend that the metallic flow velocity between rollers aggrandizes gradually from the inlet to the outlet during the hot rolling of a thick plate,a biomimetic velocity field is proposed in which the horizontal velocity component fits the egg-circular curve distribution.The velocity field and its simulated results agree quite well.Subsequently,using the determined linear criterion,energy analysis of the constructed velocity field is utilized to obtain the interior deformation power,while the vector decomposition approach is utilized to obtain the frictional power and shear power.On this basis,the overall power is obtained and the analytical solutions are generated for the rolling torque,rolling force and the coefficient of the stress state under different egg curves by minimizing the neutral angle.Furthermore,the parameter optimization of the characteristic parameterρwhich affects the slope of the egg-circular curve is carried out and the best egg-circular curve which can minimize the energy consumption is determined.The best agreement between the theoretical and observed values of rolling force and rolling torque is under this curve,and the mean relative errors of the rolling torque and rolling force are no more than 2.93%,while the maximum error is no more than 8.35%.展开更多
基金Projects(51011120053, 50823006, 50825102) supported by the National Natural Science Foundation of China
文摘The yield behavior of metallic glasses was studied. Three yield criteria, including von Mises yield criterion, Mohr-Coulomb yield criterion and the unified yield criterion were used to describe the yield phenomena of the metallic glasses. Two classes of the experimental data were chosen to draw the yield loci using the unified yield criterion. It is shown that the unified yield criterion can be used to describe the yield behavior of the metallic glasses no matter whether the metallic glasses show strength- different effect or non-strength-different effect. Almost all the widely accepted yield criteria are the subsets of the unified yield criterion if the intermediate principle stress and/or the intermediate principle shear stress are not considered at all.
基金Project(51071056)supported by the National Natural Science Foundation of ChinaProjects(HEUCF121712,HEUCF201317002)supported by the Fundamental Research Funds for the Central Universities of China
文摘As a new attempt, local canning compression was applied in order to implement large plastic deformation of nickel-titanium shape memory alloy (NiTi SMA) at room temperature. The plastic mechanics of local canning compression of NiTi SMA was analyzed according to the slab method as the well as plastic yield criterion. Transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and scanning electron microscopy (SEM) were used to study the microstructural evolution as well as deformation behavior of NiTi samples under local canning compression. Increasing the hydrostatic pressure with the increase in the outer diameters of the steel cans is responsible for suppressing the initiation and growth of the micro-cracks, which contributes to enhancing the plasticity ofNiTi SMA and avoiding the occurrence of brittle fracture. Plastic deformation of NiTi SMA under a three-dimensional compressive stress state meets von-Mises yield criterion at the true strains ranging from about 0.15 to 0.50, while in the case of larger plastic strain, von-Mises yield criterion is unable to be met since the amorphous phase arises in the deformed NiTi sample.
基金The Project of the Ministry of Housing and Urban-Rural Development(No.2014-K4-010)
文摘The analysis of plane strain elastic-plastic bending of a linear strain hardening curved beam with a narrow rectangular cross section subjected to couples at its end is conducted based on a unified yield criterion. The solutions for the mechanical properties of plane strain bending are derived, which are adapted for various kinds of non-strength differential materials and can be degenerated to those based on the Tresca, von Mises, and twin-shear yield criteria. The dependences of the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane on different yield criteria and Poisson’s ratios are discussed. The results show that the influences of different yield criteria and Poisson’s ratio on the two critical bending moments, the radii of the interfaces between the elastic and plastic regions and the radial displacements of the points at the symmetrical plane of the curved beam are significant. Once the value of bis obtained by experiments, the yield criterion and the corresponding solution for the materials of interest are then determined.
基金This research was funded by National Science,Research and Innovation Fund(NSRF),and King Mongkut’s University of Technology North Bangkok with Contract No.KMUTNBeFFe66e12.
文摘The problem considered in this short note is the limit load determination of a vertical rock slope.The classical limit theorem is employed with the use of adaptive finite elements and nonlinear programming to determine upper and lower bound limit loads of a Hoek-Brown vertical rock slope.The objective function of the mathematical programming problem is such as to optimize a boundary load,which is known as the limit load,resembling the ultimate bearing capacity of a strip footing.While focusing on the vertical slope,parametric studies are carried out for several dimensionless ratios such as the dimensionless footing distance ratio,the dimensionless height ratio,and the dimensionless rock strength ratio.A comprehensive set of design charts is presented,and failure envelopes shown with the results explained in terms of three identified failure mechanisms,i.e.the face,the toe,and the Prandtl-type failures.These novel results can be used with great confidence in design practice,in particularly noting that the current industry-based design procedures for the presented problem are rarely found.
基金This research was supported by the National Natural Sci—ence Foundation of China(Grant No.50474015)
文摘In Haigh Westergaard stress space linear combination of twin shear stress and Tresca yield functions is called the mean yield (MY) criterion. The mathematical relationship of the criterion and its plastic work rate done per unit volume were derived. A generalized worked example of slab forging was analyzed by the criterion and its corresponding plastic work rate done per unit volume. Then, the precision of the solution was compared with those by Mises and Twin shear stress yield criterions, respectively. It turned out that the calculated results by MY criterion were in good agreement with those by Mises criterion.
文摘According to the load-structure method, the wall rock with lining can bear the load caused by the surrounding rock, and the rock resistant coefficient (RRC) is a key parameter for evaluating the capacity of this wall rock. Based on the Mohr-Coulomb yield criterion, this paper develops a formula for calculating the RRC, which has been applied to the real engi-neering project, such as Xiamen Xiang’an East Passage Underwater Tunnel Project. The fact shows that this formula is helpful for designers to determine the RRC value.
基金ItemSponsored by National Natural Science Foundation of China (50474015)
文摘Using the twin shear stress yield criterion, the surface integral of the co-line vectors, and the integration depending on upper limit, Kobayashi's three-dimensional velocity field of rolling was analyzed and an analytical expression of rolling torque and single force was obtained. Through redoing the same experiment of rolling pure lead as Sims, the calculated results by the above expression were compared with those of Kobayashi and Sims formulae. The results show that the twin shear stress yield criterion is available for rolling analysis and the calculated results by the new formula are a little higher than those by Kobayashi and Sims ones if the reduction ratio is less than 30%.
文摘A generalized yield criterion is proposed based on the metai plastic deformation mechanics and the fundamental formula in theory of plasticity. Using the generalized yield criterion, the reason is explained that Mises yield criterion and Tresca yield criterion do not completely match with experimental data. It has been shown that the yield criteria of ductile metals depend not only on the quadratic invariant of the deviatoric stress tensor J2, but also on the cubic invariant of the deviatoric stress tensor J3 and the ratio of the yield stress in pure shear to the yield stress in uniaxial tension κ/σs. The reason that Mises yield criterion and Tresca yield criterion are not in good agreement with the experimental data is that the effect of J3 and κ/σs is neglected.
基金supported by National Natural Science Foundation of China (Grant No. 50474015)State Key Laboratory of Rolling and Automation(RAL) Self-determination Science Foundation of UK (Grant No. RAL_SD_2008_2)
文摘Currently, for some complex plastic deformations, the analytical solution can not be obtained by using Mises yield criterion, because Mises yield criterion is nine dimensions, the velocity field is complex, and the solving methods are not innovative. Corresponding solutions of these problems are that yield criterion is linearized to reduce the variable numbers, and the velocity field and the solving methods are reasonably simplified, respectively. In this paper, a new linear yield criterion--mean yield(MY) criterion and inner-product of strain rate vector are used to analytically solve 3D forging taking into account bugling of sides. The velocity field is expressed as a vector in three dimensions, and rotation and divergence are applied to confirm that the velocity field is kinematically admissible. Then, the corresponding strain rate tensor of the velocity field is transformed into principal one by making the determinant of coefficients of the tensor cubic equation be zero. By using MY criterion, the plastic power is term by term integrated and summed according to inner-product of strain rate vector. An upper bound analytical solution is obtained for the forging, and verified by a pure lead press test. The test result turns out that the total pressure calculated by MY criterion is higher by 2.5%-15% than measuring value. In addition, a measuring formula of bulging parameter (a) is proposed, but the values of a measured by the formula are lower than those optimized by the golden section search. The total pressure calculated by MY criterion is compared with the ones by twin shear, Trasca yield, and Mises yield criterion. The comparing result shows that the total pressure calculated by MY criterion is slightly higher than the mean value of that by twin shear and Trasca yield criterion, and lower than that by Mises yield criterion, but more close to that by Mises yield criterion compared with that by other two. The proposed analytical solving methods can be effectively used to other complex plastic deformation, simplifying the solving process and obtaining the reasonable results.
基金Beijing Natural Science Foundation(No.L201010)the United Fund of Ministry of Education for Equipment Pre-Research(Grant No.6141A02033121)National Natural Science Foundation of China(Grant No.51975041).
文摘A novel yield criterion based on CPB06 considering anisotropic and tension-compression asymmetric behaviors of magnesium alloys was derived and proposed(called M_CPB06).This yield criterion can simultaneously predict the yield stresses and the Lankford ratios at different angles(if any)under uniaxial tension,compression,equal-biaxial and equal-compression conditions.Then,in order to further describe the anisotropic strain-hardening characteristics of magnesium alloy,the proposed M_CPB06 criterion was further evolved to the M_CPB06ev model by expressing the parameters of the M_CPB06 model as functions of the plastic strain.As the model was developed,the stresses and Lankford ratios of AZ31B and ZK61M magnesium alloys at different angles under tensile,compressive and through-thickness compressive conditions were used to calibrate the M_CPB06/M_CPB06ev and the existing CPB06ex2 model.Calibration results reveal that compared with the CPB06ex2 yield criterion with equal quantity of coefficients,the M_CPB06 criterion exhibits certain advancement,and meanwhile the M_CPB06ev model can relatively accurately predict the change of the yield locus with increase of the plastic strain.Finally,the M_CPB06ev model was developed through UMAT in LS-DYNA.Finite element simulations using the subroutine were conducted on the specimens of different angles to the rolling direction under tension and compression.Simulation results were highly consistent with the experimental results,demonstrating a good reliability and accuracy of the developed subroutine.
基金Project(2010B14814) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(200801133) supported by the Ministry of Water Resources of China for Public Welfare ProfessionProject(50809023) supported by the National Natural Science Foundation of China
文摘Based on Mohr-Coulomb (M-C) criterion, the parameters of Druker-Prager (D-P) criterion for geomaterial were determined under non-associated flow rule, and thus a new D-P type criterion was presented. Two assumptions were employed during the derivation: 1) principal strains by M-C model and D-P model are equal, and 2) the material is under plane strain condition. Based on the analysis of the surface on rt plane, it is found that the proposed D-P type criterion is better than the D-P criterion with M-C circumscribed circle or M-C inscribed circle, and is applicable for stress Lode angle less than zero. By comparing the predicted results with the test data of sand under plane strain condition and other D-P criteria, the proposed criterion is verified and agrees well with the test data, which is further proved to be better than other D--P type criteria in certain range of Lode angle. The criterion was compiled into a finite difference package FLAC3D by user-subroutine, and was used to analyze the stability of a slope by strength reduction method. The predicted slope safety factor from the proposed criterion agrees well with that by Spencer method, and it is more accurate than that from classic D-P criteria.
基金funded by the National Institute for Occupational Safety and Health(NIOSH)(Grant No.200-2016-90154)sponsored by the Alpha Foundation for the Improvement of Mine Safety and Health,Inc.(ALPHA FOUNDATION)。
文摘Spalling of pillar ribs has been a major hazard in the mining industry for decades.In the absence of rib support guidelines,accidents have continued to occur in recent years.Developing effective support guidelines requires a complete understanding of complex pillar damage mechanisms.Continuum models represent a convenient tool for analyzing this problem,but the behavior of such models is dependent of the choice of the constitutive model.In this study,a recently proposed constitutive model was used to simulate the rib fracturing process in a longwall chain pillar at West Cliff mine.After calibration,the model was able to capture the rib displacement profiles for multiple locations of the longwall face and the stress evolution 4 m into the pillar.The rib bolts in the model were found to be yielding over 60% of their length under the headgate loading condition.The model also predicted a steady damage accumulation in the rib for certain face locations,which is consistent with the description of the rib at the site.Damage was localized along the upper part of the pillar and underscored the role that the dirt band played in controlling rib deterioration at the site.The ability of the numerical model to replicate field measurements provides confidence in the capabilities of the new constitutive model.Finally,the need of using multi-point calibration is highlighted by comparing the results of the calibrated model to an alternative model calibrated to a smaller amount of data.
文摘Many experimental results show that a wide class of ductile materials obey often nonlinear behavior, thus it is important to propose a nonlinear criterion describing nonlinear behavior of ductile material. A new nonlinear yield criterion was proposed which gives a series of new failure criteria, establishes a relationship among various failure criteria, and encompasses previous yield criteria as special cases or approximations. The criterion is capable of being expressed in a simple mathematical expression and through a particular physical concept, it also agree with some experimental data. It may therefore serve as a possible admissible isotropic yield criterion.
文摘This work aims at determining the overall response of a two-phase elastoplastic composite to isotropic loading. The composite under investigation consists of elastic particles embedded in an elastic perfectly plastic matrix governed by the Mohr-Coulomb yield criterion and a non-associated plastic flow rule. The composite sphere assemblage model is adopted, and closed-form estimates are derived for the effective elastoplastic properties of the composite either under tensile or compressive isotropic loading. In the case when elastic particles reduce to voids, the composite in question degenerates into a porous elastoplastic material. The results obtained in the present work are of interest, in particular, for soil mechanics.
基金supported by the National Natural Science Foundation of China(Nos.11072125 and11272175)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20130002110044)the China Postdoctoral Science Foundation(No.2015M570035)
文摘Inspired by Cardano's method for solving cubic scalar equations, the addi- tive decomposition of spherical/deviatoric tensor (DSDT) is revisited from a new view- point. This decomposition simplifies the cubic tensor equation, decouples the spher- ical/deviatoric strain energy density, and lays the foundation for the von Mises yield criterion. Besides, it is verified that under the precondition of energy decoupling and the simplest form, the DSDT is the only possible form of the additive decomposition with physical meanings.
文摘In this paper a linearized and unified yield crierion of metals is presented, which is in a form of a set of linear functions with two pararneters. The parameters are ex- pressed in terms of tension yield stress and so-called “shear-stretch ratio” and can bereadily determined from experimental data. It is shown that in stress space the set of yield functions is a set of polygons with twelve edges located between the Tresca’s hexagon and twin-shear-stress hexagon ̄[1]. In this paper the present yield function isused to analyse the prestressiap loose running fit cylinders.
文摘The correction in the derivation of the Gurson yield criterion is reported. Aprerequisite kine-matical condition ignored in Gurson's paper is imposed, and a parameter (C_1) ,which was unreasonably set to zero, is restored.
基金National Natural Science Foundation of China (No.50609027)
文摘The study results of the internal friction character of geomaterials conclude that the internal friction exists in mechanical elements all the time having a direction opposite to the shear stress,and the deformation failure mechanism of geomaterials greatly differs from that of metals. For metals,the failure results from shear stresses make the crystal structure slip; whereas for geomaterials,owing to its attribute of granular structures,their deformation follows the friction law,it is the co-action of shear stresses and perpendicular stresses that makes grains overcome the frictions between them,thus leading to the final failure of relative sliding.Therefore,on the basis of the cognition above,a triple shear energy criterion is proposed. Its corresponding Drucker-Prager criterion for geomaterials is also given. The new criterion can be rewritten to the Mohr-Coulomb criterion by neglecting the effect of the intermediate principal stress,and to the Mises criterion by not taking the internal friction angle into consideration. Then the studies of yield criteria commonly used are conducted systematically from the points of stress,strain and energy of geomaterials. The results show that no matter which expression form of stress,strain or energy is used for the yield criterion,the essence is the same and the triple shear energy yield criterion is the unified criterion of materials. Finally,the experimental verification is conducted in connection with the practical application of the triple shear energy yield criterion in an engineering project,and the calculation result shows that the Mohr-Coulomb criterion which only takes the single shear surface into account is more conservative than the energy criterion that does consider the effect of triple shear surfaces.
文摘When the Drucker Prager yield criterion is used, the MSC/NASTRAN program frequently predicts noticeable errors. The relevant part of NASTRAN Handbook was checked and some errors in the elasto plastics theory used in NASTRAN were detected in this paper. The procurement to prove these errors was verified by numerical calculation.
基金support from the National Natural Science Foundation of China(Grant Nos.52074187,U1960105 and 52274388)the Undergraduate Training Program for Innovation and Entrepreneurship,Soochow University,China(Grant No.202210285158Y).
文摘For the sake of solving the problem that it is difficult to be integrated for the Mises specific plastic power due to its nonlinearity,a new linear criterion,named the globally optimal approximation criterion,is constructed by the polygonal approximation to the Mises circle.The new criterion is proved to be the linear function of the principal stress componentsσ1,σ2 andσ3 and the trajectory of it on theπ-plane is a non-equiangular but equilateral dodecagon intersecting the Mises circle.The theoretical results of the current criterion described by the Lode stress parameters are in excellent accordance with the experimental results.Meanwhile,according to the trend that the metallic flow velocity between rollers aggrandizes gradually from the inlet to the outlet during the hot rolling of a thick plate,a biomimetic velocity field is proposed in which the horizontal velocity component fits the egg-circular curve distribution.The velocity field and its simulated results agree quite well.Subsequently,using the determined linear criterion,energy analysis of the constructed velocity field is utilized to obtain the interior deformation power,while the vector decomposition approach is utilized to obtain the frictional power and shear power.On this basis,the overall power is obtained and the analytical solutions are generated for the rolling torque,rolling force and the coefficient of the stress state under different egg curves by minimizing the neutral angle.Furthermore,the parameter optimization of the characteristic parameterρwhich affects the slope of the egg-circular curve is carried out and the best egg-circular curve which can minimize the energy consumption is determined.The best agreement between the theoretical and observed values of rolling force and rolling torque is under this curve,and the mean relative errors of the rolling torque and rolling force are no more than 2.93%,while the maximum error is no more than 8.35%.