Intense upconversion emissions of YLiF 4∶Er 3+ synthesized by hydrothermal method were obtained. The upconversion intensity decreases with the increase of environment temperature. In different temperature, the ...Intense upconversion emissions of YLiF 4∶Er 3+ synthesized by hydrothermal method were obtained. The upconversion intensity decreases with the increase of environment temperature. In different temperature, the upconversion mechanism is different. At room temperature, the green upconversion mechanism is the combination of two photon process and three photon process, and the red upconversion mechanism is two photon process.展开更多
YLiF4: Er^3+ was synthesized by hydrothermal method. Concentration of Er^3+ is changed from 0 to 5 %. The absorption of Er^3+ in all samples from 200 to 1200 nm was measured at room temperature. The J-O parameters...YLiF4: Er^3+ was synthesized by hydrothermal method. Concentration of Er^3+ is changed from 0 to 5 %. The absorption of Er^3+ in all samples from 200 to 1200 nm was measured at room temperature. The J-O parameters calculated from absorption spectrum are Ω2: = 1.05 × 10^-20 cm^2, Ω4 = 1.25 × 10^-20 cm^2 and Ω6 = 1.35 × 10^-20 cm^2 Infrared-to-visible upconversion emission of YLiF4:Er^3+ was observed when excited by 980 nm. The results show that the Er^3 + content is less than 1.5 %, excite-state absorption is the main mechanism of upconversion emission. When Er^3+ content is larger than 1.5%, both of the excite-state absorption and energy transfer lead to the upconversion luminescence. The upconversion intensity was enhanced with the increasing of Er^3+ concentration. At room temperature, the lifetime of ^2H11/2 and ^4S3/2 is 205 μs while that of ^4F9/2 is 188 μs for sample Er-2. The transition rates and quantum efficiency were also calculated. The quantum efficiencies of ^4S3/2 and 4F9/2 are 27.9% and 10.7%, respectively.展开更多
文摘Intense upconversion emissions of YLiF 4∶Er 3+ synthesized by hydrothermal method were obtained. The upconversion intensity decreases with the increase of environment temperature. In different temperature, the upconversion mechanism is different. At room temperature, the green upconversion mechanism is the combination of two photon process and three photon process, and the red upconversion mechanism is two photon process.
文摘YLiF4: Er^3+ was synthesized by hydrothermal method. Concentration of Er^3+ is changed from 0 to 5 %. The absorption of Er^3+ in all samples from 200 to 1200 nm was measured at room temperature. The J-O parameters calculated from absorption spectrum are Ω2: = 1.05 × 10^-20 cm^2, Ω4 = 1.25 × 10^-20 cm^2 and Ω6 = 1.35 × 10^-20 cm^2 Infrared-to-visible upconversion emission of YLiF4:Er^3+ was observed when excited by 980 nm. The results show that the Er^3 + content is less than 1.5 %, excite-state absorption is the main mechanism of upconversion emission. When Er^3+ content is larger than 1.5%, both of the excite-state absorption and energy transfer lead to the upconversion luminescence. The upconversion intensity was enhanced with the increasing of Er^3+ concentration. At room temperature, the lifetime of ^2H11/2 and ^4S3/2 is 205 μs while that of ^4F9/2 is 188 μs for sample Er-2. The transition rates and quantum efficiency were also calculated. The quantum efficiencies of ^4S3/2 and 4F9/2 are 27.9% and 10.7%, respectively.