期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Characteristics and control factors of feldspar dissolution in gravity flow sandstone of Chang 7 Member,Triassic Yanchang Formation,Ordos Basin,NW China 被引量:1
1
作者 ZHU Haihua ZHANG Qiuxia +4 位作者 DONG Guodong SHANG Fei ZHANG Fuyuan ZHAO Xiaoming ZHANG Xi 《Petroleum Exploration and Development》 SCIE 2024年第1期114-126,共13页
To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb... To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly. 展开更多
关键词 gravity flow sandstone differential feldspar dissolution mica-feldspar dissolution experiment chang 7 Member of Triassic yanchang formation Ordos Basin
下载PDF
Oderly accumulation theory of shale system petroleum resource and its prospecting significance-A case study of Chang 7 Member of Yanchang Formation in Ordos Basin 被引量:5
2
作者 Cui Jingwei Zhu Rukai +1 位作者 Li Shixiang Zhang Zhongyi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期265-266,共2页
1 Introduction Shale formations bear abundant mineral resource and*unconventional petroleum resource,and the unconventional petroleum resource that contain in the shale formation should be integrated and researched.
关键词 In Oderly accumulation theory of shale system petroleum resource and its prospecting significance-A case study of chang 7 Member of yanchang formation in Ordos Basin
下载PDF
Reservoir formation conditions and key technologies for exploration and development in Qingcheng large oilfield
3
作者 Suotang Fu Jinhua Fu +4 位作者 Xiaobing Niu Shixiang Li Zhiyu Wu Xinping Zhou Jiangyan Liu 《Petroleum Research》 2020年第3期181-201,共21页
The Qingcheng oilfield,the largest shale oil field in China,was discovered in 2019 in source rock of Chang 7 Member of Mesozoic Yanchang Formation,Changqing Oilfield in Ordos Basin,with newly increased proven geologic... The Qingcheng oilfield,the largest shale oil field in China,was discovered in 2019 in source rock of Chang 7 Member of Mesozoic Yanchang Formation,Changqing Oilfield in Ordos Basin,with newly increased proven geological reserves of 358 million tons,predicted geological reserves of 693 million tons,and a total of 1.051 billion tons of shale oil resources.This achieves a historic breakthrough in exploration of shale oil in Chang 7 Member.In recent years,focusing on key issues,such as whether there develop sweet spots in source rock,whether commercial oil production capacity can be formed,and whether scale-effective development can be achieved,studies about geological conditions for shale oil accumulation have been continuously carried out,key supporting technologies have been developed,and a series of theoretical innovations and technological breakthroughs have been achieved in oil exploration in source rocks.The results indicate that shale oil accumulation in Chang 7 Member is controlled by following factors.Firstly,lacustrine black shale,dark mudstone and other high-quality source rocks lay a material foundation for shale oil formation.Secondly,sandy deposits intercalated within black shale and dark mudstones are exploration sweet spots,and sandbody combination types are controlled by morphology of bottom of the lacustrine basin.Thirdly,reservoir properties are good due to development of micro-nano pore throats.Finally,reservoirs with high oil saturation and high gas-oil ratio are formed due to high-intensity oil charging in source rock.Effective matching of multiple factors is a key for shale oil accumulation in Chang 7 Member in Ordos Basin.Through innovation of key supporting technologies,exploration and development technologies for shale oil are developed,and substantial breakthrough on exploration and development of shale oil is realized.The first application of logging-seismic combination technology in loess plateau improves significantly quality of 3D seismic data,which effectively guides prediction of sandy sweet spots.Three-quality well logging technology is used for further evaluation of geological and engineering sweet spots of shale oil.With volumetric fracturing technology based on precise segmentation of long horizontal wells,initial daily oil production of individual well is increased from previously 10 tons to more than 18 tons.The exploration breakthrough in source rocks in Chang 7 Member in Qingcheng oilfield provides an important resource base for the second accelerated development of Changqing Oilfield.It is predicated that oil production from shale in Chang 7 Member in Qingcheng oilfield will reach three million tons in 2022 and five million tons in 2025. 展开更多
关键词 chang 7 member of yanchang formation Shale oil Geological conditions for oil accumulation Supporting technologies for exploration and development Qingcheng oilfield Ordos basin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部