期刊文献+
共找到252篇文章
< 1 2 13 >
每页显示 20 50 100
Study on the Physical Process and Seismogenic Mechanism of the Yangbi MS 6.4 Earthquake in Dali,Yunnan Province
1
作者 DUAN Mengqiao ZHAO Cuiping ZHOU Lianqing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期22-23,共2页
The Ms 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali Prefecture,Yunnan Province,which was the largest earthquake after the 2014 Jinggu Ms 6.6 earthquake,in western Yunnan.After the earthquake,the rapid ... The Ms 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali Prefecture,Yunnan Province,which was the largest earthquake after the 2014 Jinggu Ms 6.6 earthquake,in western Yunnan.After the earthquake,the rapid field investigation and earthquake relocation reveal that there was no obvious surface rupture and the earthquake did not occur on pre-existing active fault,but on a buried fault on the west side of Weixi–Qiaohou–Weishan fault zone in the eastern boundary of Baoshan sub-block.Significant foreshocks appeared three days before the earthquake.These phenomena aroused scholars'intensive attention.What the physical process and seismogenic mechanism of the Yangbi Ms 6.4 earthquake are revealed by the foreshocks and aftershocks?These scientific questions need to be solved urgently. 展开更多
关键词 The yangbi Ms 6.4 earthquake 3D velocity structure microseismic detection B-VALUE source parameters nuleation process seismogenic mechanism
下载PDF
A high-resolution seismic catalog for the 2021 M_(S)6.4/M_(W)6.1 Yangbi earthquake sequence, Yunnan, China: Application of AI picker and matched filter 被引量:12
2
作者 Yijian Zhou Abhijit Ghosh +3 位作者 Lihua Fang Han Yue Shiyong Zhou Youjin Su 《Earthquake Science》 2021年第5期390-398,共9页
We present a high-resolution seismic catalog for the 2021 M_(S)6.4/M_(W)6.1 Yangbi sequence.The catalog has a time range of 2021-05-01 to 2021-05-28,and contains~8,000 well located events.It captures the features of t... We present a high-resolution seismic catalog for the 2021 M_(S)6.4/M_(W)6.1 Yangbi sequence.The catalog has a time range of 2021-05-01 to 2021-05-28,and contains~8,000 well located events.It captures the features of the whole foreshock sequence and the early aftershocks.We designed a detection strategy incorporating both an artificial intelligent(AI)picker and a matched filter algorithm.Here,we adopt a hybrid AI method incorporating convolutional and recurrent neural network(CNN&RNN)for event detection and phase picking respectively(i.e.CERP),a light-weight AI picker that can be trained with small volume of data.CERP is first trained with detections from a STA/LTA and Kurtosis-based method called PAL,and then construct a rather complete template set of~4,000 events.Finally,the matched filter algorithm MESS augments the initial detections and measures differential travel times with cross-correlation,which finally results in precise relocation.This process gives 9,026 detections,among which 7,943 events can be well relocated.The catalog shows as expected power-law distribution of frequency magnitude and reveals detailed pattern of seismicity evolution.The main features are:(1)the foreshock sequence images simple fault geometry with consistent strike,but also show a variable event depth along strike;(2)the mainshock ruptures the same fault of the foreshock sequence and activate conjugate faults further to the southeast;(3)complex seismicity are developed in the post-seismic period,indicating complex triggering mechanisms.Thus,our catalog provides a reliable basis for further investigations,such as b-value studies,rupture process,and triggering relations. 展开更多
关键词 yangbi earthquake seismic catalog earthquake detection AI picker matched filter.
下载PDF
Comparison of the earthquake detection abilities of PhaseNet and EQTransformer with the Yangbi and Maduo earthquakes 被引量:10
3
作者 Ce Jiang Lihua Fang +1 位作者 Liping Fan Boren Li 《Earthquake Science》 2021年第5期425-435,共11页
PhaseNet and EQTransformer are two state-of-the-art earthquake detection methods that have been increasingly applied worldwide.To evaluate the generaliz-ation ability of the two models and provide insights for the dev... PhaseNet and EQTransformer are two state-of-the-art earthquake detection methods that have been increasingly applied worldwide.To evaluate the generaliz-ation ability of the two models and provide insights for the development of new models,this study took the sequences of the Yunnan Yangbi M6.4 earthquake and Qinghai Maduo M7.4 earthquake as examples to compare the earthquake detection effects of the two abovementioned models as well as their abilities to process dense seismic sequences.It has been demonstrated from the corresponding research that due to the differences in seismic waveforms found in different geographical regions,the picking performance is reduced when the two models are applied directly to the detection of the Yangbi and Maduo earthquakes.PhaseNet has a higher recall than EQTransformer,but the recall of both models is reduced by 13%-56%when compared with the results rep-orted in the original papers.The analysis results indicate that neural networks with deeper layers and complex structures may not necessarily enhance earthquake detection perfor-mance.In designing earthquake detection models,attention should be paid to not only the balance of depth,width,and architecture but also to the quality and quantity of the training datasets.In addition,noise datasets should be incorporated during training.According to the continuous waveforms detected 21 days before the Yangbi and Maduo earthquakes,the Yangbi earthquake exhibited foreshock,while the Maduo earthquake showed no foreshock activity,indicating that the two earthquakes’nucleation processes were different. 展开更多
关键词 earthquake detection deep learning PhaseNet EQTransformer yangbi earthquake Maduo earth-quake
下载PDF
A preliminary report of the Yangbi, Yunnan, M_(S)6.4 earthquake of May 21, 2021 被引量:14
4
作者 ZhiGao Yang Jie Liu +3 位作者 Xue-Mei Zhang WenZe Deng GuangBao Du XiYan Wu 《Earth and Planetary Physics》 CSCD 2021年第4期362-364,共3页
According to the reports of China Earthquake Networks Center,an Ms6.4 earthquake occurred in Yangbi City,Dali Prefecture,Yun-nan Province,on May 21,2021;the epicenter was located at 25.67°N and 99.87°E with ... According to the reports of China Earthquake Networks Center,an Ms6.4 earthquake occurred in Yangbi City,Dali Prefecture,Yun-nan Province,on May 21,2021;the epicenter was located at 25.67°N and 99.87°E with a focal depth of 8 km.Within 5 km from the epicenter the average elevation is 2268 m. 展开更多
关键词 yangbi M_(s)6.4 earthquake focal mechanism earthquake sequence
下载PDF
Using Airgun Source Signals to Study Regional Wave Velocity Changes before and after the Yunlong M_S5.0 and Yangbi M_S5.1 Earthquakes 被引量:3
5
作者 YANG Jianwen LI Lei +4 位作者 ZHANG Pengying YE Beng HE Yingwen CHEN Jia CHA Wenjian 《Earthquake Research in China》 CSCD 2019年第2期320-335,共16页
On the basis of the airgun source signals recorded by the stations from January,2016 to June,2017,we use cross-correlation detection technology to obtain the characteristics of the stable phase travel time change of e... On the basis of the airgun source signals recorded by the stations from January,2016 to June,2017,we use cross-correlation detection technology to obtain the characteristics of the stable phase travel time change of each station.We used the Yunlong MS5.0 and Yangbi MS5.1 earthquakes as samples.According to regional characteristics,13 stations with high signal-to-noise ratios and complete data were selected(including 3 fixed stations and 10 active source stations).They are divided into four regions,and on the basis of the GNSS baseline data,the characteristics of regional wave velocity changes before and after the earthquake are analyzed.The results show that the station phase travel time change and the regional stress characteristics represented by the GNSS baseline data have good correlation in the short-term.Due to different degrees of regional stress,there are differences in the travel time changes of different stations in the four regions.Before the Yunlong MS5.0 and Yangbi MS5.1 earthquakes,with regional stress adjustment,there is an upward trend in the travel time changes of related stations in the adjacent areas of up to 0.02 s.The difference is that there are differences in the time nodes and duration of the travel time anomalies,and there is a reverse descent process after the Yangbi MS5.1 earthquake.There are different degrees of travel time fluctuations in the relevant stations before and after the two earthquakes,but the fluctuation range before and after the earthquake was small.Compared with the water level change of the reservoir,the adjustment of the regional stress is more likely to have a substantial impact on the travel time changes of the relevant stations. 展开更多
关键词 Airgun source CROSS-CORRELATION detection TRAVEL time change Yunlong M S5.0 EARTHQUAKE yangbi M S5.1 EARTHQUAKE
下载PDF
Three-dimensional crustal P-wave velocity structure in the Yangbi and Eryuan earthquake regions, Yunnan, China 被引量:5
6
作者 Jia Jia Qingju Wu Fuyun Wang 《Earthquake Science》 2021年第4期358-366,共9页
A magnitude 5.5 earthquakes occurred in Eryuan County,Dali Bai Autonomous Prefecture,Yunnan Province,China,on March 3.And a magnitude 5.0 earthquake occurred in the same place on April 17,2013,i.e.,45 days later.Then,... A magnitude 5.5 earthquakes occurred in Eryuan County,Dali Bai Autonomous Prefecture,Yunnan Province,China,on March 3.And a magnitude 5.0 earthquake occurred in the same place on April 17,2013,i.e.,45 days later.Then,on May 21,2021,multiple earthquakes,one with magnitude 6.4 and several at 5.0 or above,occurred in Yangbi County,Dali Bai Autonomous Prefecture,Yunnan Province,China.All of these occurred in the Weixi-QiaohouWeishan fault zone.In this study,1,874 seismic events in Yangbi and Eryuan counties were identified by automatic micro-seismic identification technology and the first arrivals were picked up manually.Following this,a total of 11,968 direct P-wave absolute arrivals and 73,987 high-quality Pwave relative arrivals were collected for joint inversion via the double difference tomography method.This was done to obtain the regional three-dimensional fine crustal P-wave velocity structure.The results show that the travel time residuals before and after inversion decreased from the initial–0.1–0.1 s to–0.06–0.06 s.The upper crust in the study area,which exhibited a low-velocity anomaly,corresponded to the basin region;this indicated that the low-velocity anomaly in the shallow part of the study area was affected by the basin.Results also showed some correlation between the distribution of the earthquakes and velocity structure,as there was a lowvelocity body Lv1 with a wide distribution at depths ranging from 15–20 km in the Yangbi and Eryuan earthquake regions.In addition,earthquakes occurred predominantly in the highlow velocity abnormal transition zone.The low-velocity body in the middle and lower crust may be prone to concentrating upper crustal stress,thus leading to the occurrence of earthquakes. 展开更多
关键词 yangbi and Eryuan earthquakes double difference tomography three-dimensional P-wave velocity structure Weixi-Qiaohou-Weishan fault.
下载PDF
Characteristics of ground cracks caused by the M_(S) 6.4 Yangbi earthquake and the corresponding tectonic significance 被引量:3
7
作者 Changwei Liu Zufeng Chang Jianlin Li 《Earthquake Research Advances》 CSCD 2022年第2期21-29,共9页
An M_(S)6.4 earthquake occurred near Yangbi County, Dali Bai Autonomous Prefecture, Yunnan Province, at 21:48on May 21, 2021. The earthquake location is characterized by complex geological structures, with multiple ac... An M_(S)6.4 earthquake occurred near Yangbi County, Dali Bai Autonomous Prefecture, Yunnan Province, at 21:48on May 21, 2021. The earthquake location is characterized by complex geological structures, with multiple active faults distributed around the epicenter that is located at the west edge of the Sichuan-Yunnan rhombic block(25.67°N, 99.87°E). A total of 42 ground cracks are found by earthquake field investigations. The cracks are mainly concentrated in the Ⅷ degree area on the west side of the Yangbi River. Among these, 9 coseismic tectonic ground cracks generated by shear fractures are found in three villages(i.e., Akechang, Meijia-Lijia, and Huajiazhuang), which are distributed along the strike of the northwest-trending linear folds, showing the tectonic characteristics of right-lateral tension or left-stepping cracks. The structural attribute of ground cracks sustains the kinematic properties of the Weixi-Qiaohou fault, namely right-lateral strike-slip. 展开更多
关键词 yangbi earthquake Structural ground crack Weixi-Qiaohou fault Seismogenic structure
下载PDF
Spatiotemporal evolution of the 2021 M_(S)6.4 Yangbi earthquake sequence 被引量:2
8
作者 Qincai Wang Jinchuan Zhang +2 位作者 Zhongping Wang Jun Li Weijun Wang 《Earthquake Science》 2021年第5期413-424,共12页
Based on the seismic phase reports of the Yangbi area from January 1 to June 25,2021,and the waveform data of M≥4 earthquakes,we obtained the relocation results and focal mechanism solutions of the M_(S)6.4 Yangbi ea... Based on the seismic phase reports of the Yangbi area from January 1 to June 25,2021,and the waveform data of M≥4 earthquakes,we obtained the relocation results and focal mechanism solutions of the M_(S)6.4 Yangbi earthquake sequence using the HypoDD and CAP methods.Based on our results,our main conclusions are as follows:(1)the M_(S)6.4 Yangbi earthquake sequence is a typical foreshock-mainshock-aftershock sequence.The fore-shocks of the first two stages have the obvious fronts of migration and their migration rate increased gradually.There was no apparent front of migration during the third stage,and the occurrence of the mainshock was related to stress triggering from a M5.3 foreshock.We tentatively speculate that the rupture pattern of the Yangbi earthquake sequence conforms to the cascading-rupture model;and(2)the main fault of the M_(S)6.4 Yangbi earthquake sequence is a NW-trending right-lateral strike-slip fault.As time progressed,a minor conjugate aftershock belt formed at the northwest end of this fault,and a dendritic branching structure emerged in the southern fault segment,showing a complex seismogenic fault structure.We suggested that the fault of the Yangbi earthquake sequence may be a young sub-fault of the Weixi-Weishan fault. 展开更多
关键词 M_(S)6.4 yangbi earthquake sequence spatiotemporal evolution double-difference earthquake location fo-cal mechanism solution
下载PDF
Relationship between gravity change and Yangbi M_(S)6.4 earthquake 被引量:1
9
作者 Xiong Yang Yiqing Zhu +1 位作者 Yunfeng Zhao Shouchun Wei 《Geodesy and Geodynamics》 EI CSCD 2023年第4期321-330,共10页
Based on the relative and absolute gravity measurements in the southern South-North Seismic Belt since 2015,we analyzed the dynamic change of the regional gravity field and its relationship with the Yangbi M_(S)6.4 ea... Based on the relative and absolute gravity measurements in the southern South-North Seismic Belt since 2015,we analyzed the dynamic change of the regional gravity field and its relationship with the Yangbi M_(S)6.4 earthquake that occurred on May 21,2021.The results show that:(1)The regional gravity field changes are closely related to the Weixi-Qiaohou fault,which reflects the surface gravity field changes caused by the fault activity from 2015 to 2021;(2)The gravity field change related to the preparation of Yangbi earthquake has experienced the evolution process of"steady state-regional gravity anomaly-local gravity anomaly-four-quadrant distribution-large area positive anomaly-earthquake occurring in the reverse change process";(3)The cumulative and differential change images of the gravity field show that there were significant gravity changes in the two years preceding the Yangbi earthquake,and the earthquake occurred in the high-gradient belt of gravity variation,the center of the four-quadrant,and close to the zero contour turn;(4)The dynamic evolution image of the gravity field can well reflect the precursory phenomena during the preparation for the Yangbi MS6.4 earthquake.Based on the anomaly change of mobile gravity,a certain degree of medium-term prediction was made before the Yangbi M_(S)6.4 earthquake,especially the determination of strong earthquake location. 展开更多
关键词 South-north seismic belt yangbi earthquake Gravity observation Gravity change
下载PDF
Temporal evolution of the focal mechanism consistency of the 2021 Yangbi M_(S) 6.4 earthquake sequence in Yunnan 被引量:2
10
作者 Xiaobin Li Mingpei Jin +3 位作者 Ya Huang Wenjian Cha Jun Wang Sihai Li 《Earthquake Research Advances》 CSCD 2022年第2期11-20,共10页
Using the Cut And Paste(CAP)method,we invert the focal mechanism of 38 moderate earthquakes(M_(S)≥3.0)recorded by Yunnan seismic network and analyze the corresponding focal mechanism consistency based on the minimum ... Using the Cut And Paste(CAP)method,we invert the focal mechanism of 38 moderate earthquakes(M_(S)≥3.0)recorded by Yunnan seismic network and analyze the corresponding focal mechanism consistency based on the minimum spatial rotation angle.Our results indicate that the M_(S)6.4 mainshock is induced by a lateral strike slip fault(with a rake angle of~-165°)and a little normal-faulting component event along a nearly vertical plane(dipping angle~79° and strike~138°).Combining our results with high resolution catalog,we argue that the seismogenic fault of this earthquake sequence is a secondary fault western to the major Weixi-Qiaohou-Weishan fault.The focal mechanism evolution can be divided into three periods.During the first period,the foreshock sequence,the focal mechanism consistency is the highest(KA<36°);during the second period which is shortly after the mainshock,the focal mechanism shows strong variation with KA ranging from 8° to 110°;during the third period,the seismicity becomes weak and the focal mechanism of the earthquakes becomes more consistent than the second period(18°<KA<73°).We suggest that the KA,to some extent,represents the coherence between local tectonic stress regime and the stress state of each individual earthquake.Furthermore,high focal mechanism consistency and high linearity of seismic distribution may serve as indicators for the identification of foreshock sequence. 展开更多
关键词 Cut and Paste Focal mechanism solution Consistency parameters Aftershock spreading Seismogenic fault Earthquake trend The yangbi M_(S)6.4 earthquake in 2021
下载PDF
Three-dimensional velocity structure around the focal area of the 2021 MS6.4 Yangbi earthquake 被引量:1
11
作者 Yunpeng Zhang Weitao Wang +4 位作者 Wei Yang Min Liu Jinbo Su Xiaobin Li Jun Yang 《Earthquake Science》 2021年第5期399-412,共14页
On May 21,2021,an MS6.4 earthquake occurred in Yangbi,Yunnan province,China,which exhibited typical foreshock-mainshock-aftershock characteristics.To better understand the velocity structure of the focal area and adja... On May 21,2021,an MS6.4 earthquake occurred in Yangbi,Yunnan province,China,which exhibited typical foreshock-mainshock-aftershock characteristics.To better understand the velocity structure of the focal area and adjacent fault zones,Pg/Sg travel times at 12 seismic stations for the local earthquakes with ML≥1.5 from 2009-2019 and the Yangbi sequence in May of 2021 were used to invert the three-dimensional(3D)structures for both vP and v_(P)/v_(S).The obtained structure extends deeply to 15 km for area(25°N-26.5°N,99.5°E-101°E)at a horizontal resolution of 10×10 km,and the accuracy of the v_(P) velocity was verified using airgun signals excited by the Binchuan Airgun Transmitting Seismic Station(BATSS).The resulting v_(P) and v^(P)/v_(S) images correlate with existing fault zones and the Yangbi sequence,including:(1)The shallow velocity structure at 0 km agrees with local topography,where the Binchuan basin exhibits low-v_(P) and high-v_(P)/v_(S) values.From 3-15 km,v_(P) and v_(P)/v_(S) show variations,and the boundaries are consistent with the main faults(e.g.,the Weixi-Qiaohou-Weishan,Honghe,and Chenghai faults).(2)The largest foreshock(M_(S)5.6),main-shock(MS6.4),and largest aftershock(M_(S)5.2)occurred near the boundaries where both vP and v_(P)/v_(S) have clear contrasts.(3)Small earthquakes are also concentrated in the transition zone between high-and low-vP and v_(P)/v_(S) anomalies,and are biased toward low-v_(P)/v_(S) zones.(4)Boundaries in v_(P) and v_(P)/v_(S) are observed at 20 km west of the Weixi-Qiaohou-Weishan fault,indicating that there may exist one hidden fault. 展开更多
关键词 MS6.4 yangbi earthquake Honghe fault Weixi-Qiaohou-Weishan fault body wave tomography air-gun source.
下载PDF
Apparent stress as an indicator of stress meta-instability:The 2021 M_(S)6.4 Yangbi earthquake in Yunnan,China 被引量:1
12
作者 Yan′e Li Xuezhong Chen +2 位作者 Lijuan Chen Yaqiong Ren Xiangyun Guo 《Earthquake Science》 2023年第6期433-444,共12页
Investigating spatiotemporal changes in crustal stress associated with major earthquakes has implications for understanding seismogenic processes.However,in individual earthquake cases,the characteristics of the stres... Investigating spatiotemporal changes in crustal stress associated with major earthquakes has implications for understanding seismogenic processes.However,in individual earthquake cases,the characteristics of the stress after it reaches its maximum value are rarely discussed.In this study,we use the 2021 M_S6.4 Yangbi earthquake in Yunnan,China and events of magnitudes M_L≥3.0 occurred in the surrounding area in the previous 11 years to investigate the spatiotemporal evolution of apparent stress.The results indicate that apparent stress began to increase in January 2015 and reached a maximum in January 2020.Apparent stress then remained at a high level until October 2020,after which it declined considerable.We suggest that the stress was in the accumulation stage from January 2015 to January 2020,and entered the meta-instability stage after October 2020.During the meta-instability stage,the zone of decreasing stress expanded continuously and the apparent stress increased around the Yangbi earthquake source region.These features are generally consistent with the results of laboratory rock stress experiments.We propose that apparent stress can be a good indicator for determining whether the stress at a specific location has entered the meta-instability stage and may become the epicenter of an impending strong earthquake. 展开更多
关键词 2021 M_(S)6.4 yangbi earthquake apparent stress relative change meta-instability
下载PDF
Performance of the Yangbi M_(S)6.4 earthquake disaster in different geomorphic units in Yunnan 被引量:1
13
作者 Jianlin Li Zufeng Chang Changwei Liu 《Earthquake Research Advances》 CSCD 2022年第2期30-37,共8页
An M_(S)6.4 earthquake occurred in Yangbi,Yunnan province,on May 21,2021.According to related investigations,the macro-epicenter of the earthquake is 6 km northwest of Yangbi County,and the seismogenic structure is th... An M_(S)6.4 earthquake occurred in Yangbi,Yunnan province,on May 21,2021.According to related investigations,the macro-epicenter of the earthquake is 6 km northwest of Yangbi County,and the seismogenic structure is the NW-trending Weixi-Qiaohou fault.The earthquake area is located in the hinterland of the Hengduan Mountains in the northwest of Yunnan Province,a region dominated by high and medium-high mountains,with deep canyons and tectonic basins in between.Various geomorphic features are derived from drastic topographic changes and huge geological differences in the earthquake area.There are a variety of buildings in the earthquake-affected zone,including civil and brick-wood structures ones with weak seismic performance,as well as brick-concrete and frame ones with better seismic performance.This paper summarizes and analyzes different characteristics of the earthquake in different geomorphic units through field investigations of different buildings and geological disasters in the affected area.The results show that under the same earthquake intensity,the damage to most buildings(located in slope areas or rooted in weak strata)is amplified by the earthquake.The earthquake has exerted an obvious propagation effect along the direction of the seismogenic structure.Moreover,local ground fissures will aggravate the damage to the buildings even without surface dislocation.Thus,we suggest that attention should be paid to the ground fissures caused by the slope effect.The fissure areas may also be the disaster spot of collapses and landslides in case of a high-magnitude earthquake. 展开更多
关键词 yangbi M_(S)6.4 earthquake Earthquake intensity Geomorphic unit Earthquake disaster
下载PDF
An accessible seismological dataset of 2021 Yangbi M_(S)6.4 earthquake
14
作者 Shuguang Wang Hui Yang +12 位作者 Weilai Wang Fang Wang Zheng Liu Wei Yang Weitao Wang Yunpeng Zhang Lu Li Jiupeng Hu Xiaobin Li Wenjian Cha Beng Ye Hongbo Zhu Jun Yang 《Earthquake Science》 2021年第5期460-464,共5页
A M_(S)6.4 earthquake occurred on 21 May 2021 in Yangbi county,Dali prefecture,Yunnan,China,at 21:48 Beijing Time(13:48 UTC).Earthquakes with an M3.0 or higher occurred before and after the main shock.Seismic data ana... A M_(S)6.4 earthquake occurred on 21 May 2021 in Yangbi county,Dali prefecture,Yunnan,China,at 21:48 Beijing Time(13:48 UTC).Earthquakes with an M3.0 or higher occurred before and after the main shock.Seismic data analysis is essential for the in-depth investigation of the 2021 Yangbi M_(S)6.4 earthquake sequence and the seismotectonics of northwestern Yunnan.Institute of Geophysics,China Earthquake Administration(CEA),has compiled a dataset of seismological observations from 157 broadband stations located within 500 km of the epicenter,and has made this dataset available to the earthquake science research community.The dataset(total file size:329 GB)consists of event waveforms with a sampling frequency of 100 sps collected from 18 to 28 May 2021,20-Hz and 100-Hz continuous waveforms collected from 12 to 31 May 2021,and seismic instrument response files.To promote data sharing,the dataset also includes the seismic event waveforms from 20 to 22 May 2021 recorded at 50 stations of the ongoing Binchuan Active Source Geophysical Observation Project,for which the data protection period has not expired.Sample waveforms of the main shock are included in the appendix of this article and can be downloaded from the Earthquake Science website.The event and continuous waveforms are available from the Earthquake Science Data Center website(www.esdc.ac.cn)on application. 展开更多
关键词 yangbi earthquake seismological dataset geophys-ical observation data share
下载PDF
Seismogenic environment and mechanism of the Yangbi M_(S)6.4 earthquake in Yunnan,China
15
作者 Mengqiao Duan Kezhen Zuo +1 位作者 Cuiping Zhao Lianqing Zhou 《Earthquake Science》 2022年第4期297-310,共14页
The Yangbi M_(S)6.4 earthquake occurred on May 21,2021 in western Yunnan,China,where moderate earthquakes strike frequently.It exhibited a typical“foreshock-mainshock-aftershock”sequence and did not occur on a pre-e... The Yangbi M_(S)6.4 earthquake occurred on May 21,2021 in western Yunnan,China,where moderate earthquakes strike frequently.It exhibited a typical“foreshock-mainshock-aftershock”sequence and did not occur on a pre-existing active fault.The seismogenic environment and mechanism of this earthquake have aroused considerable research attention.In this study,we obtain the three-dimensional v_(P),v_(S)and v_(P)/v_(S)images using the v_(P)/v_(S)consistency-constrained double-difference tomography method,which improves the accuracy of v_(P)/v_(S)models.We focus on characteristics of v_(P)/v_(S)images in areas with a lateral resolution of 0.1°,and reveal the seismogenic environment of the Yangbi M_(S)6.4 earthquake.The conclusions are as follows:(1)Low velocity and high-v_(P)/v_(S)anomalies are revealed at different depths around the northern segment of the Red River fault.v_(S)and v_(P)/v_(S)images along the Weixi-Qiaohou-Weishan fault and the buried faults on its west show obviously segmented feature.(2)The source region of the Yangbi M_(S)6.4 earthquake is located in a low-v_(P)/v_(S)zone implying high medium strength.High-v_(P)/v_(S)anomalies in its NW direction indicate cracks development and the existence of fluids or partial melts,which are unfavorable for stress accumulation and triggering large earthquakes.Such conditions have also prevented the earthquake sequence from extending northwestward.(3)With the southeastward extrusion of materials from the Tibetan Plateau,fluid migration was blocked by the low-v_(P)/v_(S)body in the source region.The high-v_(P)/v_(S)anomaly beneath the source region may implies that the fluids or partial melts in the middle and lower crust gradually weakened medium strength at the bottom of the seismogenic layer,and preparing the largest foreshock in the transition zone of high to low v_(P)/v_(S).Meanwhile,tectonic stress incessantly accumulated in the brittle upper crust,eventually led to the M_(S)6.4 earthquake occurrence. 展开更多
关键词 yangbi M_(S)6.4 earthquake v_(P) v_(S) and v_(P)/v_(S)tomography seismogenic environment and mechanism
下载PDF
Ultra-Low Frequency Electromagnetic Emissions Registered during the 21 May 2021 Yangbi <i>M</i><sub>S</sub>6.4 Earthquake in China
16
作者 Chuanfang Xiang Mei Li +3 位作者 Zhaoli Ma Chuanqi Teng Zhirong Li Zhigang Shao 《Natural Science》 2022年第1期1-12,共12页
Four ULF (0.01 Hz - 20 Hz) electromagnetic stations had been gradually established and put into service from 2010 to 2011 in Zhaotong area, Yunnan province. Two stations of Qiaojia and Yongshan have been running with ... Four ULF (0.01 Hz - 20 Hz) electromagnetic stations had been gradually established and put into service from 2010 to 2011 in Zhaotong area, Yunnan province. Two stations of Qiaojia and Yongshan have been running with continuous and high quality recordings and free of influence of solar activities, like magnetic storms. In this investigation, daily recordings from 1 January 2020 to 22 May 2021 have been examined of these both stations. The results show that weak anomalous signals appeared at the beginning of March 2021 with relative low magnitudes of 0.6 nT at Qiaojia station and 0.3 nT at Yongshan station. At the end of this month, the emissions gained an abrupt increase and the amplitudes reached up to 3.8 nT at Qiaojia station and 1.2 nT at Yongsha station. Then, the amplitude decreased to be 0.5 - 1.5 nT and 0.6 - 1.3 nT respectively at both stations but with a high variation frequency in all components. This situation lasted till the Yangbi </span><i><span style="font-family:Verdana;">M</span></i><sub><span style="font-family:Verdana;">S</span></sub><span style="font-family:Verdana;"> 6.4 earthquake happened on May 21, 2021, more than 300 km away from these two ULF observing stations. Totally, the ULF magnetic emissions had been characterized by a synchronous variation in all components at two observing stations. 展开更多
关键词 ULF Electromagnetic Emissions yangbi M 6.4 Earthquake Synchronous Variation
下载PDF
Relocation of the Foreshocks and Aftershocks of the 2021 Ms 6.4 Yangbi Earthquake Sequence,Yunnan,China 被引量:10
17
作者 Ting Yang Boren Li +5 位作者 Lihua Fang Youjin Su Yusheng Zhong Jingqiong Yang Min Qin Yaji Xu 《Journal of Earth Science》 SCIE CAS CSCD 2022年第4期892-900,共9页
An Ms 6.4 earthquake occurred in Yangbi,Yunnan,China on May 21,2021,which has obvious foreshock activity and abundant aftershocks.Based on the seismic observation data recorded by the Yunnan Seismic Network three days... An Ms 6.4 earthquake occurred in Yangbi,Yunnan,China on May 21,2021,which has obvious foreshock activity and abundant aftershocks.Based on the seismic observation data recorded by the Yunnan Seismic Network three days before and seven days after the mainshock,a doubledifference location method was used to relocate 2133 earthquakes of the Yangbi sequence.Aftershocks are mostly distributed to the southeast of the mainshock in a unilateral rupture pattern.This sequence exhibits a SE-trending linear alignment with a length of about 25 km,and most of the focal depth is above 12 km.Integrated with the seismic distribution and focal mechanism results,we infer that the strike of the seismogenic fault is about 140°,and dipping to the SW.The fault structure revealed by the seismic sequence is complex,with the NW segment exhibiting a steep dip and relatively simple structure of strike-slip rupture and the SE segment consisting of several branching ruptures.The Yangbi Earthquake is a typical foreshock-mainshock-aftershock sequence,and the mainshock is likely triggered by the largest foreshock.This earthquake occurred in the boundary between high-and lowvelocity anomalous zone,where is susceptible to generate large earthquakes. 展开更多
关键词 yangbi Earthquake Weixi-Qiaohou-Weishan fault earthquake sequence double-difference relocation EARTHQUAKES
原文传递
2021年漾濞M_(S)6.4地震前重力段差指标量分析及场源特征反演
18
作者 郑秋月 黄江培 +3 位作者 吴宇琴 陈政宇 刘东 王青华 《地震研究》 北大核心 2025年第1期22-31,共10页
基于2016-2021年云南地区流动重力重复观测资料,利用流动重力段差变化可视化方法及重力场变化显著性程度指标量G和C值研究了2021年漾濞M_(S)6.4地震前的重力变化,并反演了其与地震孕育相关的场源分布特征,开展了对研究区重力变化及场源... 基于2016-2021年云南地区流动重力重复观测资料,利用流动重力段差变化可视化方法及重力场变化显著性程度指标量G和C值研究了2021年漾濞M_(S)6.4地震前的重力变化,并反演了其与地震孕育相关的场源分布特征,开展了对研究区重力变化及场源特征的定性和定量研究。结果表明:①段差表示法的大小和方向对地下物质的运移方向有一定的指示意义,震前重力指标量呈显著上升,震后又迅速回落,重力变化指标量G和C值可作为评价测网区域重力变化显著性程度的定量依据;②反演得到的重力变化场源位置主要集中在红河断裂带北段至滇西北一带,且表现出与维西-乔后断裂及红河断裂带走向较为一致的分布特征,这可能与地震前中上地壳的深部物质运移相关。 展开更多
关键词 重力段差 定量分析 重力变化指数 场源反演 漾濞M_(S)6.4地震
下载PDF
A Prediction Method of Ground Motion for Regions without Available Observation Data(LGB-FS)and Its Application to both Yangbi and Maduo Earthquakes in 2021 被引量:2
19
作者 Jin Chen Hong Tang +1 位作者 Wenkai Chen Naisen Yang 《Journal of Earth Science》 SCIE CAS CSCD 2022年第4期869-884,共16页
Currently available earthquake attenuation equations are locally applicable,and methods based on observation data are not applicable in areas without available observation data.To solve the above problems and further ... Currently available earthquake attenuation equations are locally applicable,and methods based on observation data are not applicable in areas without available observation data.To solve the above problems and further improve the prediction accuracy of ground motion parameters,we present a prediction model referred to as a light gradient boosting machine with feature selection(LGB-FS).It is based on a light gradient boosting machine(LightGBM)constructed using historical strong motion data from the NGA-west2 database and can quickly simulate the distribution of strong motion near the epicenter after an earthquake.Cases study shows that compared with GMPE methods and those based on real-time observation data,the model has a better prediction effect in areas without available observation data and can be applied to Yangbi Earthquake and Maduo Earthquake.The feature importance evaluation based on both information gains and partial dependence plots(PDPs)reveals the complex relationships between multiple factors and ground motion parameters,allowing us to better understand their mechanisms and connections. 展开更多
关键词 LightGBM ground motion parameters NGA-west2 feature selection yangbi Maduo EARTHQUAKES
原文传递
The seismogenic structures and migration characteristics of the 2021 Yangbi M6.4 Earthquake sequence in Yunnan,China 被引量:2
20
作者 Kun YAN Weijun WANG +3 位作者 Fei PENG Qincai WANG Huadong KOU Aijing YUAN 《Science China Earth Sciences》 SCIE EI CAS CSCD 2022年第8期1522-1537,共16页
We constructed a more complete earthquake catalog in the 2021 Yangbi M6.4 focal area by re-scanning the continuous waveforms integrated with deep learning and template matching techniques,to explore the seismogenic st... We constructed a more complete earthquake catalog in the 2021 Yangbi M6.4 focal area by re-scanning the continuous waveforms integrated with deep learning and template matching techniques,to explore the seismogenic structures of the Yangbi mainshock and its nucleation process.The new catalog has three times the number of earthquakes than the CENC catalog,and the magnitude completeness has dropped from 1.1 to 0.5.The distribution of earthquakes indicates a broom-shaped structure consisting of several oblique secondary faults and a strike-slip main fault which strikes to 315°with 80°dipping to NE.The earthquakes extend along the fault strike about 27 km in width and 2-13 km at depth and have noticeable variations on seismicity in the mainshock’s north and south.Compared with the north,the south has denser and higher magnitude aftershocks and also has a seismic gap probably weakened by the fluid at the depth range of about 5-6 km.The foreshocks were mainly active in the 8-kilometer-long fault zone south of the mainshock,which show a steady drop in b-values over time and a migration pattern toward the epicenter of two steep jumps,stagnation,and then acceleration which finally triggered the mainshock.While in the north,seldom foreshock occurred,and the aftershocks were delayed triggered 3 hours after the mainshock,and sparsely scattered shallow at depth and small in magnitude.To summarize,the northern part of the Yangbi seismogenic fault is thought to be relatively locked,whereas the southern part has a weakening zone and promotes pre-slip.The nucleation mechanism of the mainshock and its onset at the junction of the locked and pre-slip zones may be a combination of pre-slip and cascade triggering. 展开更多
关键词 yangbi earthquake Microseismic detection Seismogenic structure Earthquake migration Earthquake nucleation process
原文传递
上一页 1 2 13 下一页 到第
使用帮助 返回顶部