Temporal and spatial variations of concentrations of heavy metals including mercury (Hg), zinc (Zn), lead (Pb), arsenic (As), copper (Cu), and cadmium (Cd) in the sediments of the Yangshan Deepwater Harbor...Temporal and spatial variations of concentrations of heavy metals including mercury (Hg), zinc (Zn), lead (Pb), arsenic (As), copper (Cu), and cadmium (Cd) in the sediments of the Yangshan Deepwater Harbor were determined based on 6 cruises in autumn and winter, respectively, from 2010 to 2013. The results demonstrated that the overall concentrations of heavy metals were low and distributed in uniform patterns. The concentrations of Hg, Zn, Pb, and Cd in autumn were significantly higher than those in winter with small fluctuations for As and Cu in terms of seasonal variations. Results of factor analysis showed that Pb, Cd, and Zn were derived from inland industrial and shipping discharges as well as the degradation of organic pollutants in marine environment. While agricultural pollutions, cargo shifting and construction debris from reclamation projects contributed to the sources of Cu, As, and Hg. Ecological risk assessment by Mean Sediment Quality Guideline Quotient (SQG-Q) revealed that the degree for eco-risk of the sediments was low-and-moderate in autumn, higher than that in winter. Hg and Cu were the dominant eco-risk factors. The results of Index of geoaccumulation (Igeo) showed that the whole sites of the sea area were barely influenced by Hg, As, Zn, and Pb, and the extents of Cd and Cu contaminations were in low grade. Contamination degree of all the six heavy metals could be ranked as the following: Cd〉Pb〉Zn〉Hg〉As. According to the results of integrated score of factor analysis, the contamination degree for heavy metals in sediments of the Yangshan Deepwater Harbor was low, despite sites No.5, No.4 and No.3, which were heavily contaminated compared with others.展开更多
By analysis of published papers on the Yangtze estuary and hydrological and sediments data in Yangshan Harbor area, many similarities are found between Yangshan Harbor area and the Yangtze estuary. These similarities ...By analysis of published papers on the Yangtze estuary and hydrological and sediments data in Yangshan Harbor area, many similarities are found between Yangshan Harbor area and the Yangtze estuary. These similarities include the phenomenon of stagnating flow areas, the distributive characteristics of the highest suspended sediment concentration areas, superficial sediments and shoal bars. The stagnating flow area is the major similarity which causes other similarities. These similarities indicate that: 1) Turbidity Maximum and mouth bars in estuaries are mainly caused by the hydraulic balance of stagnating flow areas of estuaries; 2) The stagnating sand area of sands caused by stagnating flow area often locates on the narrower side of the stagnating flow area; 3) The location (or shape) of fine sediments area caused by stagnating flow area reflects the location (or shape) of the stagnating flow area. Both Yangshan Harbor area and the Yangtze estuary are the important developmental areas in the future (man-made similarity). In-depth studies on these similarities between Yangshan Harbor area and the Yangtze estuary will have momentous theoretical and practical significance.展开更多
基金supported by the Study on the Analysis of the Impacts of Reclamation Engineering on Marine Ecological Environment in Yangshan Deepwater Harbor and Protecting Measures of Shanghai Municipal Science and Technology Commission (No. 12231203402)
文摘Temporal and spatial variations of concentrations of heavy metals including mercury (Hg), zinc (Zn), lead (Pb), arsenic (As), copper (Cu), and cadmium (Cd) in the sediments of the Yangshan Deepwater Harbor were determined based on 6 cruises in autumn and winter, respectively, from 2010 to 2013. The results demonstrated that the overall concentrations of heavy metals were low and distributed in uniform patterns. The concentrations of Hg, Zn, Pb, and Cd in autumn were significantly higher than those in winter with small fluctuations for As and Cu in terms of seasonal variations. Results of factor analysis showed that Pb, Cd, and Zn were derived from inland industrial and shipping discharges as well as the degradation of organic pollutants in marine environment. While agricultural pollutions, cargo shifting and construction debris from reclamation projects contributed to the sources of Cu, As, and Hg. Ecological risk assessment by Mean Sediment Quality Guideline Quotient (SQG-Q) revealed that the degree for eco-risk of the sediments was low-and-moderate in autumn, higher than that in winter. Hg and Cu were the dominant eco-risk factors. The results of Index of geoaccumulation (Igeo) showed that the whole sites of the sea area were barely influenced by Hg, As, Zn, and Pb, and the extents of Cd and Cu contaminations were in low grade. Contamination degree of all the six heavy metals could be ranked as the following: Cd〉Pb〉Zn〉Hg〉As. According to the results of integrated score of factor analysis, the contamination degree for heavy metals in sediments of the Yangshan Deepwater Harbor was low, despite sites No.5, No.4 and No.3, which were heavily contaminated compared with others.
基金Key Project of Science and Technology,Ministry of Education, No. 01079
文摘By analysis of published papers on the Yangtze estuary and hydrological and sediments data in Yangshan Harbor area, many similarities are found between Yangshan Harbor area and the Yangtze estuary. These similarities include the phenomenon of stagnating flow areas, the distributive characteristics of the highest suspended sediment concentration areas, superficial sediments and shoal bars. The stagnating flow area is the major similarity which causes other similarities. These similarities indicate that: 1) Turbidity Maximum and mouth bars in estuaries are mainly caused by the hydraulic balance of stagnating flow areas of estuaries; 2) The stagnating sand area of sands caused by stagnating flow area often locates on the narrower side of the stagnating flow area; 3) The location (or shape) of fine sediments area caused by stagnating flow area reflects the location (or shape) of the stagnating flow area. Both Yangshan Harbor area and the Yangtze estuary are the important developmental areas in the future (man-made similarity). In-depth studies on these similarities between Yangshan Harbor area and the Yangtze estuary will have momentous theoretical and practical significance.