As a multi-branch estuary system, the Yangtze Estuary presents distinctive characteristics of hydrodynamic processes through co-action among river runoff, tides, wind-waves, and gravitational circulation. To study the...As a multi-branch estuary system, the Yangtze Estuary presents distinctive characteristics of hydrodynamic processes through co-action among river runoff, tides, wind-waves, and gravitational circulation. To study the pathways of flushing water along all of the estuary's branches and analyze their differences, especially those due to the influence of seawater intrusion and discharge variations, a free surface flow modeling suite TELEMAC-MASCARET involving passive tracers was applied to the Yangtze Estuary and the adjacent waters. The open boundary conditions were provided by the Nao.99 b model(Matsumoto et al., 2000), which was calibrated using observed velocity and salinity data obtained in March 2002. The water age, which was used as the diagnostic tool to study the flushing efficiency of the water body across the estuary, was solved by additional advection-diffusion-reaction equations implemented in the TELEMAC modeling system. The transport properties were investigated under different river discharge scenarios, which represented seasonal impacts; aspects relating to the influence of tide, surface wind stress, and density-induced circulation on age were also investigated. Model results showed that river runoff is one of the dominant factors influencing the spatial distribution of the mean age, while tidal force is another important factor. The horizontal freshwater age distribution demonstrated similarity compared with the salinity distribution; the vertical age distribution resembled the stratification pattern of salinity in all branches where stratification persists. An experimental numerical simulation of tracing saltwater age from the lower reaches of the estuary was conducted, and implicated the connectivity with transport processes of freshwater from upstream. Additionally, a particle tracking algorithm was used to analyze the dynamic characteristics of the four passages. The South Passage and South Channel were found to be significant as main water flow passages, while salinity intrusion in the North Branch was found to cause a return flow that partially joins the South Branch flushing water.展开更多
For simulating fresh and salt water mixing in estuaries, a three dimensional nonlinear baroclinic numerical model is developed, in which the gradients of horizontal pressure contain die gradient of barotropic pressure...For simulating fresh and salt water mixing in estuaries, a three dimensional nonlinear baroclinic numerical model is developed, in which the gradients of horizontal pressure contain die gradient of barotropic pressure arising from the gradient of tidal level and the gradient of baroclinic pressure due to the gradient of salinity. The Eulerian-Lagrangian method is employed to descretize both the momentum equations of tidal motion and the equation of salt water diffusion so as to improve the computational stability and accuracy. The methods to provide the boundary conditions and the initial conditions are proposed, and the criterion for computational stability of the salinity fields is presented. The present model is used for modeling fresh and salt water mixing in the Yangtze Estuary. Computations show that the salinity distribution has the characteristics of partial mixing pattern, and that the present model is suitable for simulation of fresh and salt water mixing in the Yangtze Estuary.展开更多
In order to determine how the subaqueous delta evolution depends on the water and sediment processes in the Yangtze Estuary, the amounts of water and sediment discharged into the estuary were studied. The results show...In order to determine how the subaqueous delta evolution depends on the water and sediment processes in the Yangtze Estuary, the amounts of water and sediment discharged into the estuary were studied. The results show that, during the period from 1950 to 2010, there was no significant change in the annual water discharge, and the multi-annual mean water discharge increased in dry seasons and decreased in flood seasons. However, the annual sediment discharge and the multi-annual mean sediment discharge in flood and dry seasons took on a decreasing trend, and the intra-annual distribution of water and sediment discharges tended to be uniform. The evolution process from deposition to erosion occurred at the -10 m and -20 m isobaths of the subaqueous delta. The enhanced annual water and sediment discharges had a silting-up effect on the delta, and the effect of sediment was greater than that of water. Based on data analysis, empirical curves were built to present the relationships between the water and sediment discharges over a year or in dry and flood seasons and the erosion/deposition rates in typical regions of the suhaqueous delta, whose evolution followed the pattern of silting in flood seasons and scouring in dry seasons. Notably, the Three Gorges Dam has changed the distribution processes of water and sediment discharges, and the dam's regulating and reserving functions can benefit the subaqueous delta deposition when the annual water and sediment discharges are not affected.展开更多
Via the valuable opportunity of the Three Gorges Reservoir (TGR) 135-m filling in June 2003, the Yangtze discharge and suspended sediment concentration (SSC) entering the estuary during the period from 15 May to 15 Ju...Via the valuable opportunity of the Three Gorges Reservoir (TGR) 135-m filling in June 2003, the Yangtze discharge and suspended sediment concentration (SSC) entering the estuary during the period from 15 May to 15 July 2003 were analyzed to examine the instant effects of the filling on them. The Yangtze discharge and SSC entering the estuary in the periods before, during and after the filling clearly indicated three phases: 1) the pre-storage phase characterized by natural conditions, in which the SSC increased with increasing water discharge; 2) the storage phase, during which the SSC decreased dramatically with decreasing water discharge; and 3) the post-storage phase, during which both the SSC and water discharge remained at relatively low levels first until the end of June, then the SSC increased gradually with increasing water discharge. It seems that the times for the instant effects of the decreasing discharge downstream from the upper Yangtze on the Yangtze discharge and SSC entering the estuary due to the TGR 135-m filling to take place were about 5 d and 1 d respectively, while both were about 18 d for those of the increasing discharge. This probably reflects the buffering and resultantly hysteresis of the 1800-km stretch from the upper Yangtze to the estuary. The results are helpful for scientific and hydrological investigation of the Yangtze mainstream downstream from the TGR Dam and of the estuarine and adjacent coastal waters.展开更多
We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and th...We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and their interactions on WDR using the improved version of three-dimensional numerical model ECOM. Using data for annual mean wind speed and river discharge during January, we determined that the flood, ebb, net WDR values in the North Branch of the estuary were 3.48%, 1.68%,-4.06% during spring tide, and 4.82%, 2.34%,-2.79% during neap tide, respectively. Negative net WDR values denote the transport of water from the North Branch into the South Branch. Using the same data, the corresponding ratios were 50.09%, 50.92%, 54.97%, and 52.33%, 50.15%, 43.86% in the North Channel and 38.56%, 44.78%, 103.96%, and 36.92%, 43.17%, 60.97% in the North Passage, respectively. When northerly wind speed increased, landward Ekman transport was enhanced in the North Branch, increasing the flood WDR, while the ebb WDR declined and the net WDR exhibited a significant decrease. Similarly, in the North Channel, the flood WDR is increased, the ebb WDR reduced, and the net WDR showed a marked decrease. In the North Passage, the flood WDR also increased while the ebb and net WDR declined. As the river discharge increased, the flood and ebb WDR of the North Branch increased slightly and the net WDR increased markedly. In the North Channel the flood and ebb WDR changed very slightly, while the net WDR declined during spring tides and increased during neap tides. The WDR in the North Passage changed slightly during flood and ebb tides while the net WDR showed a marked increase. The WDR values of different bifurcations and the responses to northerly wind, river discharge, and tide are discussed in comparison with variations in river topography, horizontal wind-induced circulation, and tidal-induced residual current.展开更多
In order to monitor water quality in the Yangtze Estuary, water samples were collected and field observation of current and velocity stratification was carried out using a shipboard acoustic Doppler current profiler ...In order to monitor water quality in the Yangtze Estuary, water samples were collected and field observation of current and velocity stratification was carried out using a shipboard acoustic Doppler current profiler (ADCP). Results of two representative variables, the temporal and spatial variation of new point source sewage discharge as manifested by chemical oxygen demand (COD) and the initial water quality distribution as manifested by dissolved oxygen (DO), were obtained by application of the Environmental Fluid Dynamics Code (EFDC) with solutions for hydrodynamics during tides. The numerical results were compared with field data, and the field data provided verification of numerical application: this numerical model is an effective tool for water quality simulation. For point source discharge, COD concentration was simulated with an initial value in the river of zero. The simulated increments and distribution of COD in the water show acceptable agreement with field data. The concentration of DO is much higher in the North Branch than in the South Branch due to consumption of oxygen in the South Branch resulting from discharge of sewage from Shanghai. The DO concentration is greater in the surface layer than in the bottom layer. The DO concentration is low in areas with a depth of less than 20 m, and high in areas between the 20-m and 30-m isobaths. It is concluded that the numerical model is valuable in simulation of water quality in the case of specific point source pollutant discharge. The EFDC model is also of satisfactory accuracy in water quality simulation of the Yangtze Estuary.展开更多
The occurrence of the red tide is an extremely complex process, which is considered as the comprehensive result of various factors. The Yangtze River estuary water area is always in high incidence area of red tide. In...The occurrence of the red tide is an extremely complex process, which is considered as the comprehensive result of various factors. The Yangtze River estuary water area is always in high incidence area of red tide. In this paper, according to the events of red tide and meteorologic and hydrologic data in Yangtze River estuary water area from 2000 to 2010, by using mathematical statistics methods, we analyze the relevance between the occurrence of the red tide and the synoptic situation field, and probe into the regular patterns.展开更多
Biogenic elements and six phosphorus (P) fractions in surface sediments from the Changjiang Estuary and adjacent waters were determined to investigate the governing factors of these elements, and further to discuss ...Biogenic elements and six phosphorus (P) fractions in surface sediments from the Changjiang Estuary and adjacent waters were determined to investigate the governing factors of these elements, and further to discuss their potential uses as paleo-environment proxies and risks of P release from sediment. Total organic carbon (TOC) and leachable organic P (Lea-OP) showed high concentrations in the estuary, Zhejiang coast and offshore upwelling area. They came from both the Changjiang River and marine biological input. Biogenic silicon (BSi) exhibited a high concentration band between 123 and 124°E. BSi mainly came from diatom production and its concentration in the inshore area was diluted by river sediment. Total nitrogen (TN) was primarily of marine biogenic origin. Seaward decreasing trends of Fe-bound P and Al-bound P revealed their terrestrial origins. Influenced by old Huanghe sediment delivered by the Jiangsu coastal current, the maximum concentration of detrital P (Det-P) was observed in the area north of the estuary. Similar high concentrations of carbonate fluorapatite (CFA-P) and CaCO3in the southern study area suggested marine calcium-organism sources of CFA-P. TOC, TN and non-apatite P were enriched in fine sediment, and Det-P partially exhibited coarse-grain enrichment, but BSi had no correlation with sediment grain size. Different sources and governing factors made biogenic elements and P species have distinct potential uses in indicating environmental conditions. Transferable P accounted for 14%-46% of total P. In an aerobic environment, there was low risk of P release from sediment, attributed to excess Fe oxides in sediments.展开更多
As the Yangtze River Estuary and adjacent sea have been classified as a problem area with regard to eutrophication, it is important to explore the spatial and temporal variations of nitrogen and phosphorus (N/P) nut...As the Yangtze River Estuary and adjacent sea have been classified as a problem area with regard to eutrophication, it is important to explore the spatial and temporal variations of nitrogen and phosphorus (N/P) nutrients in this area. Based on danish hydraulic institute (DHI)'s open platform Ecolab, a hydrodynamic and water quality model was developed for the Yangtze River Estuary, in which the transport and transformation processes of different forms of N/P nutrients were considered. Validations against measured data show that the model is overall reliable. Preliminary application of the model suggests that the model can simulate the characteristics of high phosphorus concentration area in the Yangtze River Estuary, and the high concentration area is closely related to the resuspension process of particulate phosphorus.展开更多
基金supported by the National Natural Science Foundation of China (No. 51409093)
文摘As a multi-branch estuary system, the Yangtze Estuary presents distinctive characteristics of hydrodynamic processes through co-action among river runoff, tides, wind-waves, and gravitational circulation. To study the pathways of flushing water along all of the estuary's branches and analyze their differences, especially those due to the influence of seawater intrusion and discharge variations, a free surface flow modeling suite TELEMAC-MASCARET involving passive tracers was applied to the Yangtze Estuary and the adjacent waters. The open boundary conditions were provided by the Nao.99 b model(Matsumoto et al., 2000), which was calibrated using observed velocity and salinity data obtained in March 2002. The water age, which was used as the diagnostic tool to study the flushing efficiency of the water body across the estuary, was solved by additional advection-diffusion-reaction equations implemented in the TELEMAC modeling system. The transport properties were investigated under different river discharge scenarios, which represented seasonal impacts; aspects relating to the influence of tide, surface wind stress, and density-induced circulation on age were also investigated. Model results showed that river runoff is one of the dominant factors influencing the spatial distribution of the mean age, while tidal force is another important factor. The horizontal freshwater age distribution demonstrated similarity compared with the salinity distribution; the vertical age distribution resembled the stratification pattern of salinity in all branches where stratification persists. An experimental numerical simulation of tracing saltwater age from the lower reaches of the estuary was conducted, and implicated the connectivity with transport processes of freshwater from upstream. Additionally, a particle tracking algorithm was used to analyze the dynamic characteristics of the four passages. The South Passage and South Channel were found to be significant as main water flow passages, while salinity intrusion in the North Branch was found to cause a return flow that partially joins the South Branch flushing water.
基金The project is financially supported by the Research Fund of the College of Harbor,Waterway and Coastal Engineering,Hohai University.
文摘For simulating fresh and salt water mixing in estuaries, a three dimensional nonlinear baroclinic numerical model is developed, in which the gradients of horizontal pressure contain die gradient of barotropic pressure arising from the gradient of tidal level and the gradient of baroclinic pressure due to the gradient of salinity. The Eulerian-Lagrangian method is employed to descretize both the momentum equations of tidal motion and the equation of salt water diffusion so as to improve the computational stability and accuracy. The methods to provide the boundary conditions and the initial conditions are proposed, and the criterion for computational stability of the salinity fields is presented. The present model is used for modeling fresh and salt water mixing in the Yangtze Estuary. Computations show that the salinity distribution has the characteristics of partial mixing pattern, and that the present model is suitable for simulation of fresh and salt water mixing in the Yangtze Estuary.
基金supported by the National Basic Research Program of China(the 973 Program,Grant No.2010CB429002)
文摘In order to determine how the subaqueous delta evolution depends on the water and sediment processes in the Yangtze Estuary, the amounts of water and sediment discharged into the estuary were studied. The results show that, during the period from 1950 to 2010, there was no significant change in the annual water discharge, and the multi-annual mean water discharge increased in dry seasons and decreased in flood seasons. However, the annual sediment discharge and the multi-annual mean sediment discharge in flood and dry seasons took on a decreasing trend, and the intra-annual distribution of water and sediment discharges tended to be uniform. The evolution process from deposition to erosion occurred at the -10 m and -20 m isobaths of the subaqueous delta. The enhanced annual water and sediment discharges had a silting-up effect on the delta, and the effect of sediment was greater than that of water. Based on data analysis, empirical curves were built to present the relationships between the water and sediment discharges over a year or in dry and flood seasons and the erosion/deposition rates in typical regions of the suhaqueous delta, whose evolution followed the pattern of silting in flood seasons and scouring in dry seasons. Notably, the Three Gorges Dam has changed the distribution processes of water and sediment discharges, and the dam's regulating and reserving functions can benefit the subaqueous delta deposition when the annual water and sediment discharges are not affected.
基金supported by the National Basic Research Program of China (2002CB412400)the Natural Science Foundation of Shandong Province (Y2007E14)+1 种基金the Doctoral Fund of Ministry of Education of China (200804231011)the Key Lab of Submarine Geosciences and Prospecting Techniques of the Ministry of Education
文摘Via the valuable opportunity of the Three Gorges Reservoir (TGR) 135-m filling in June 2003, the Yangtze discharge and suspended sediment concentration (SSC) entering the estuary during the period from 15 May to 15 July 2003 were analyzed to examine the instant effects of the filling on them. The Yangtze discharge and SSC entering the estuary in the periods before, during and after the filling clearly indicated three phases: 1) the pre-storage phase characterized by natural conditions, in which the SSC increased with increasing water discharge; 2) the storage phase, during which the SSC decreased dramatically with decreasing water discharge; and 3) the post-storage phase, during which both the SSC and water discharge remained at relatively low levels first until the end of June, then the SSC increased gradually with increasing water discharge. It seems that the times for the instant effects of the decreasing discharge downstream from the upper Yangtze on the Yangtze discharge and SSC entering the estuary due to the TGR 135-m filling to take place were about 5 d and 1 d respectively, while both were about 18 d for those of the increasing discharge. This probably reflects the buffering and resultantly hysteresis of the 1800-km stretch from the upper Yangtze to the estuary. The results are helpful for scientific and hydrological investigation of the Yangtze mainstream downstream from the TGR Dam and of the estuarine and adjacent coastal waters.
基金Supported by the Funds for Creative Research Groups of China (No. 40721004)the National Natural Science Foundation of China (Nos. 40776012, 40976056)the Special Funds of the State Key Laboratory of Estuarine and Coastal Research (No. 2008KYYW03)
文摘We studied the flood, ebb and tidal averaged along (net) water diversion ratio (WDR) during dry season in the Changjiang (Yangtze) estuary, China, along with the effects of northerly wind, river discharge, tide and their interactions on WDR using the improved version of three-dimensional numerical model ECOM. Using data for annual mean wind speed and river discharge during January, we determined that the flood, ebb, net WDR values in the North Branch of the estuary were 3.48%, 1.68%,-4.06% during spring tide, and 4.82%, 2.34%,-2.79% during neap tide, respectively. Negative net WDR values denote the transport of water from the North Branch into the South Branch. Using the same data, the corresponding ratios were 50.09%, 50.92%, 54.97%, and 52.33%, 50.15%, 43.86% in the North Channel and 38.56%, 44.78%, 103.96%, and 36.92%, 43.17%, 60.97% in the North Passage, respectively. When northerly wind speed increased, landward Ekman transport was enhanced in the North Branch, increasing the flood WDR, while the ebb WDR declined and the net WDR exhibited a significant decrease. Similarly, in the North Channel, the flood WDR is increased, the ebb WDR reduced, and the net WDR showed a marked decrease. In the North Passage, the flood WDR also increased while the ebb and net WDR declined. As the river discharge increased, the flood and ebb WDR of the North Branch increased slightly and the net WDR increased markedly. In the North Channel the flood and ebb WDR changed very slightly, while the net WDR declined during spring tides and increased during neap tides. The WDR in the North Passage changed slightly during flood and ebb tides while the net WDR showed a marked increase. The WDR values of different bifurcations and the responses to northerly wind, river discharge, and tide are discussed in comparison with variations in river topography, horizontal wind-induced circulation, and tidal-induced residual current.
文摘In order to monitor water quality in the Yangtze Estuary, water samples were collected and field observation of current and velocity stratification was carried out using a shipboard acoustic Doppler current profiler (ADCP). Results of two representative variables, the temporal and spatial variation of new point source sewage discharge as manifested by chemical oxygen demand (COD) and the initial water quality distribution as manifested by dissolved oxygen (DO), were obtained by application of the Environmental Fluid Dynamics Code (EFDC) with solutions for hydrodynamics during tides. The numerical results were compared with field data, and the field data provided verification of numerical application: this numerical model is an effective tool for water quality simulation. For point source discharge, COD concentration was simulated with an initial value in the river of zero. The simulated increments and distribution of COD in the water show acceptable agreement with field data. The concentration of DO is much higher in the North Branch than in the South Branch due to consumption of oxygen in the South Branch resulting from discharge of sewage from Shanghai. The DO concentration is greater in the surface layer than in the bottom layer. The DO concentration is low in areas with a depth of less than 20 m, and high in areas between the 20-m and 30-m isobaths. It is concluded that the numerical model is valuable in simulation of water quality in the case of specific point source pollutant discharge. The EFDC model is also of satisfactory accuracy in water quality simulation of the Yangtze Estuary.
文摘The occurrence of the red tide is an extremely complex process, which is considered as the comprehensive result of various factors. The Yangtze River estuary water area is always in high incidence area of red tide. In this paper, according to the events of red tide and meteorologic and hydrologic data in Yangtze River estuary water area from 2000 to 2010, by using mathematical statistics methods, we analyze the relevance between the occurrence of the red tide and the synoptic situation field, and probe into the regular patterns.
基金supported by the Natural Science Foundation of China for Creative Research Groups(No.41121064)the National Basic Research Program (973)of China(No.2011CB403602,2010CB951802)the National Natural Science Foundation of China(No.41306070)
文摘Biogenic elements and six phosphorus (P) fractions in surface sediments from the Changjiang Estuary and adjacent waters were determined to investigate the governing factors of these elements, and further to discuss their potential uses as paleo-environment proxies and risks of P release from sediment. Total organic carbon (TOC) and leachable organic P (Lea-OP) showed high concentrations in the estuary, Zhejiang coast and offshore upwelling area. They came from both the Changjiang River and marine biological input. Biogenic silicon (BSi) exhibited a high concentration band between 123 and 124°E. BSi mainly came from diatom production and its concentration in the inshore area was diluted by river sediment. Total nitrogen (TN) was primarily of marine biogenic origin. Seaward decreasing trends of Fe-bound P and Al-bound P revealed their terrestrial origins. Influenced by old Huanghe sediment delivered by the Jiangsu coastal current, the maximum concentration of detrital P (Det-P) was observed in the area north of the estuary. Similar high concentrations of carbonate fluorapatite (CFA-P) and CaCO3in the southern study area suggested marine calcium-organism sources of CFA-P. TOC, TN and non-apatite P were enriched in fine sediment, and Det-P partially exhibited coarse-grain enrichment, but BSi had no correlation with sediment grain size. Different sources and governing factors made biogenic elements and P species have distinct potential uses in indicating environmental conditions. Transferable P accounted for 14%-46% of total P. In an aerobic environment, there was low risk of P release from sediment, attributed to excess Fe oxides in sediments.
基金Project supported by the National Natural Science Foun-dation of China(Grant Nos.10972134,11032007)the Scienti-fic research project of Shanghai Municipal Oceanic Bureau(Grant Nos.2011-06,2014-01)the Shanghai Scientific Research Project(Grant Nos.13231203600,14231200104)
文摘As the Yangtze River Estuary and adjacent sea have been classified as a problem area with regard to eutrophication, it is important to explore the spatial and temporal variations of nitrogen and phosphorus (N/P) nutrients in this area. Based on danish hydraulic institute (DHI)'s open platform Ecolab, a hydrodynamic and water quality model was developed for the Yangtze River Estuary, in which the transport and transformation processes of different forms of N/P nutrients were considered. Validations against measured data show that the model is overall reliable. Preliminary application of the model suggests that the model can simulate the characteristics of high phosphorus concentration area in the Yangtze River Estuary, and the high concentration area is closely related to the resuspension process of particulate phosphorus.