The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource produ...The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.展开更多
The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A ...The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A 'soil reservoir' has a large potential storage capacity and its water can be rapidly 'discharged' into the underground water in a timely fashion. The eroded, infertile soils of the Yangtze River Watershed are currently an obstacle to efficient operation of the 'soil reservoir'. The storage capacity of this 'soil reservoir'has been severely hampered due to intensive soil erosion and the formation of soil crusts. Therefore, possible measures to control floods in the Yangtze River Watershed include: rehabilitating the vegetation to preserve soil and water on the eroded infertile soils, enhancing infiltration of the different soil types, and utilizing the large 'soil reservoir' of the upper reaches of the Yangtze River.展开更多
After analysis of location feature of the south of lower reaches of Yangtze River and its construction of urban and rural integration,the paper pointed out harmonious combination between natural and artificial factors...After analysis of location feature of the south of lower reaches of Yangtze River and its construction of urban and rural integration,the paper pointed out harmonious combination between natural and artificial factors had been neglected in planning and design of farmers' residential area at the south of lower reaches of Yangtze River,"regional characteristic" losing,residential area in the form of "city community" and buildings in European style.In view of these problems,relevant planning and design thoughts and methods had been proposed as to how to create "regional characteristic" from the perspective of planning,architecture and landscape design.It discussed with emphasis the importance of construction base type and combination of environment with residential area construction;inspirations and design methods obtained from traditional architectures;and the content of landscape overall planning and specific design.It was hoped to enlighten designers to shoulder social and historical responsibility,make exploration unremittingly,and construct beautiful homelands for people.展开更多
As the major source of air pollution,sulfur dioxide(S0_(2))emissions have become the focus of global attention.However,existing studies rarely consider spatial effects when discussing the relationship between foreign ...As the major source of air pollution,sulfur dioxide(S0_(2))emissions have become the focus of global attention.However,existing studies rarely consider spatial effects when discussing the relationship between foreign direct investment(FDI)and S0_(2) emissions.This study took the Yangtze River Delta as the research area and used the spatial panel data of 26 cities in this region for 2004-2017.The study investigated the spatial agglomeration effects and dynamics at work in FDI and S0_(2) emissions by using global and local measures of spatial autocorrelation.Then,based on regression analysis using a results of traditional ordinary least squares(OLS)model and a spatial econometric model,the spatial Durbin model(SDM)with spatial-time effects was adopted to quantify the impact of FDI on S0_(2) emissions,so as to avoid the regression results bias caused by ignoring the spatial effects.The results revealed a significant spatial autocorrelation between FDI and S0_(2) emissions,both of which displayed obvious path dependence characteristics in their geographical distribution.A series of agglomeration regions were observed on the spatial scale.The estimation results of the SDM showed that FDI inflow promoted S0_(2) emissions,which supports the pollution haven hypothesis.The findings of this study are significant in the prevention and control of air pollution in the Yangtze River Delta.展开更多
The evaluation method, model and process for the flood and waterlogging disaster condition by GIS,RS and GPS technology and the method for setting up disaster condition database, dyke database and historical disaster ...The evaluation method, model and process for the flood and waterlogging disaster condition by GIS,RS and GPS technology and the method for setting up disaster condition database, dyke database and historical disaster damage database are presented. An index of flood damage degree(FDD) used to evaluate the relative degree of disaster loss and divide flood and waterlogging area is suggested. The value of flood damage degree can be calculated as follows :taking the various disaster losses of sample area in a base year as standard value and computing the ratios of various disaster loss values in different areas and years to the standard flood disaster loss values, then summing up the weighted ratios. The computed results are the value of flood damage degree in the every year. The macroscopic flood disaster distribution can be evaluated by the values of flood loss degree.展开更多
The Yangtze River Watershed in China is a climate change hotspot featuring strong spatial and temporal variability;hence, it poses a certain threat to social development. Identifying the characteristics of and regions...The Yangtze River Watershed in China is a climate change hotspot featuring strong spatial and temporal variability;hence, it poses a certain threat to social development. Identifying the characteristics of and regions vulnerable to climate change is significantly important for formulating adaptive countermeasures. However, with regard to the Yangtze River Watershed, there is currently a lack of research on these aspects from the perspective of natural and anthropogenic factors. To address this issue, in this study, based on the temperature and precipitation records from 717 meteorological stations, the RClim Dex and random forest models were used to assess the spatiotemporal characteristics of climate change and identify mainly the natural and anthropogenic factors influencing climate change hotspots in the Yangtze River Watershed for the period 1958-2017. The results indicated a significant increasing trend in temperature, a trend of wet and dry polarization in the annual precipitation, and that the number of temperature indices with significant variations was 2.8 times greater than that of precipitation indices. Significant differences were also noted in the responses of the climate change characteristics of the sub-basins to anthropogenic and natural factors;the delta plain of the Yangtze River estuary exhibited the most significant climate changes, where 88.89% of the extreme climate indices varied considerably. Furthermore, the characteristics that were similar among the identified hotpots, including human activities(higher Gross Domestic Product and construction land proportions) and natural factors(high altitudes and large proportions of grassland and water bodies), were positively correlated with the rapid climate warming.展开更多
Bibliometrics was used to statistically analyze key zones within the Yangtze River Basin(YRB)funded by the National Natural Science Foundation of China(NSFC)and national ministries over the past 20 years.This study de...Bibliometrics was used to statistically analyze key zones within the Yangtze River Basin(YRB)funded by the National Natural Science Foundation of China(NSFC)and national ministries over the past 20 years.This study determined that funds that derived from national ministries have mainly focused on issues related to environmental pollution,ecological security,technological water regulations,and river basin ecosystems,which offer a better understanding of the national requirements and the scientific knowledge of the YRB in combination with data from the NSFC.Under a background of bolstering the construction of green ecological corridors in the economic belt of the YRB,this study proposes future conceptual watershed research initiatives in this region as a study objective by reinforcing the implementation of the Chinese Ecosystem Research Network(CERN)and by emphasizing the use of new technologies,new methods,and new concepts for the prospective design of frontier research under the perspective of geoscience and earth system science.This study promotes large-scale scientific field and research objectives based on big science and big data.展开更多
Supported by the spatial analysis feature of geographic information science and assessment model of regional debris flows, hazards degrees of the debris flows in the Upper Yangtze River Watershed (UYRW) are divided ...Supported by the spatial analysis feature of geographic information science and assessment model of regional debris flows, hazards degrees of the debris flows in the Upper Yangtze River Watershed (UYRW) are divided into five grades based on grid cell. The area of no danger, light danger, medium danger, severe danger and extreme severe danger regions respectively are 278 000, 288 000, 217 000, 127 000, 15 000 km^2. Furthermore, the counties in the UYRW are classified into four classes based on the hazards degrees in each county. The number of severe danger, medium danger, light danger and no danger counties respectively are 49, 82, 77 and 105. The assessment results will be provided for the hazards forecasting and mitigation in the UYRW and ongoing regionalization of Main Function Regions in China as data and technique framework.展开更多
The Yangtze River is one of the largest and longest rivers in Asia.The river originates in the Tibet-Qinghai Plateau(headwater reach),passes through the mountainous provinces of Sichuan,Yunnan and Chongqing(upper reac...The Yangtze River is one of the largest and longest rivers in Asia.The river originates in the Tibet-Qinghai Plateau(headwater reach),passes through the mountainous provinces of Sichuan,Yunnan and Chongqing(upper reach),flows into the Central Plain(middle reach)and Lower Plain(lower reach),and finally empties into the East China Sea in Shanghai(estuary).The Yangtze River Economic Belt(YREB;Fig.1)has a surface area of 2.1展开更多
As China’s economy has evolved into the so-called new normal stage,the Communist Party of China Central Committee and the State Council have made timely moves to promote the development of the Yangtze River Economic ...As China’s economy has evolved into the so-called new normal stage,the Communist Party of China Central Committee and the State Council have made timely moves to promote the development of the Yangtze River Economic Belt as part of the country’s overall plan for a scientific development of the national economy.In January 2016,a meeting was held in Chongqing discussing展开更多
基金Sponsored by Talent Project of Tongling University(2021tlxyrc27).
文摘The ecological footprint was employed as a quantitative indicator of resource inputs,enabling a detailed account of the structure of biological resources and energy occupancy,as well as the variation of resource productivity in the Yangtze River Delta(YRD)Region.From 2004 to 2018,there were notable variations in the ecological productivity of different types of land on basis of China’s equilibrium factor across the three provinces and one city in the YRD region.Jiangsu Province exhibited the highest ecological productivity of arable land,while Anhui Province exhibited the highest ecological productivity of forest land.Shanghai City exhibited the highest ecological productivity of pasture land,while Zhejiang Province exhibited the highest ecological productivity of water area.In 2018,the proportion of arable land within the total ecological carrying capacity of the YRD region reached 74.35%.Furthermore,the contribution of Jiangsu and Anhui provinces to the YRD’s total ecological carrying capacity was 41.36%and 41.26%,respectively.In the construction of a new development pattern in the YRD region,which is dominated by the domestic cycle as the main body and mutually reinforced by domestic and international double-cycle,the YRD region should combine the utilization of natural forces with innovation in science,technology and cooperation mechanisms.Furthermore,the government should guide the concentration of social capital towards green industries.It is also recommended that the moderate reduction of ecological footprints should be encouraged,and that the security of biological resources and energy,the leadership in the field of cutting-edge science and technology should be ensured in YRD region.This will facilitate the formation of a new development pattern of higher-quality integration at the national level firstly.
基金Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011810) the National Natural Science Foundation of China (No. 49971039).
文摘The reasons for the Yangtze River flood calamity in 1998 are briefly introduced. The authors believe that using a 'soil reservoir' concept is an important means to help control flooding of the Yangtze River.A 'soil reservoir' has a large potential storage capacity and its water can be rapidly 'discharged' into the underground water in a timely fashion. The eroded, infertile soils of the Yangtze River Watershed are currently an obstacle to efficient operation of the 'soil reservoir'. The storage capacity of this 'soil reservoir'has been severely hampered due to intensive soil erosion and the formation of soil crusts. Therefore, possible measures to control floods in the Yangtze River Watershed include: rehabilitating the vegetation to preserve soil and water on the eroded infertile soils, enhancing infiltration of the different soil types, and utilizing the large 'soil reservoir' of the upper reaches of the Yangtze River.
文摘After analysis of location feature of the south of lower reaches of Yangtze River and its construction of urban and rural integration,the paper pointed out harmonious combination between natural and artificial factors had been neglected in planning and design of farmers' residential area at the south of lower reaches of Yangtze River,"regional characteristic" losing,residential area in the form of "city community" and buildings in European style.In view of these problems,relevant planning and design thoughts and methods had been proposed as to how to create "regional characteristic" from the perspective of planning,architecture and landscape design.It discussed with emphasis the importance of construction base type and combination of environment with residential area construction;inspirations and design methods obtained from traditional architectures;and the content of landscape overall planning and specific design.It was hoped to enlighten designers to shoulder social and historical responsibility,make exploration unremittingly,and construct beautiful homelands for people.
基金Under the auspices of National Natural Science Foundation of China(No.41771140)National Key R&D Program of China(No.2018YFE0105900)。
文摘As the major source of air pollution,sulfur dioxide(S0_(2))emissions have become the focus of global attention.However,existing studies rarely consider spatial effects when discussing the relationship between foreign direct investment(FDI)and S0_(2) emissions.This study took the Yangtze River Delta as the research area and used the spatial panel data of 26 cities in this region for 2004-2017.The study investigated the spatial agglomeration effects and dynamics at work in FDI and S0_(2) emissions by using global and local measures of spatial autocorrelation.Then,based on regression analysis using a results of traditional ordinary least squares(OLS)model and a spatial econometric model,the spatial Durbin model(SDM)with spatial-time effects was adopted to quantify the impact of FDI on S0_(2) emissions,so as to avoid the regression results bias caused by ignoring the spatial effects.The results revealed a significant spatial autocorrelation between FDI and S0_(2) emissions,both of which displayed obvious path dependence characteristics in their geographical distribution.A series of agglomeration regions were observed on the spatial scale.The estimation results of the SDM showed that FDI inflow promoted S0_(2) emissions,which supports the pollution haven hypothesis.The findings of this study are significant in the prevention and control of air pollution in the Yangtze River Delta.
文摘The evaluation method, model and process for the flood and waterlogging disaster condition by GIS,RS and GPS technology and the method for setting up disaster condition database, dyke database and historical disaster damage database are presented. An index of flood damage degree(FDD) used to evaluate the relative degree of disaster loss and divide flood and waterlogging area is suggested. The value of flood damage degree can be calculated as follows :taking the various disaster losses of sample area in a base year as standard value and computing the ratios of various disaster loss values in different areas and years to the standard flood disaster loss values, then summing up the weighted ratios. The computed results are the value of flood damage degree in the every year. The macroscopic flood disaster distribution can be evaluated by the values of flood loss degree.
基金Program for Guangdong Introducing Innovative and Entrepreneurial Teams,No.2019ZT08L213National Natural Science Foundation of China,No.41701631+1 种基金Guangdong Provincial Key Laboratory Project,No.2019B121203011Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou),No.GML2019ZD0403。
文摘The Yangtze River Watershed in China is a climate change hotspot featuring strong spatial and temporal variability;hence, it poses a certain threat to social development. Identifying the characteristics of and regions vulnerable to climate change is significantly important for formulating adaptive countermeasures. However, with regard to the Yangtze River Watershed, there is currently a lack of research on these aspects from the perspective of natural and anthropogenic factors. To address this issue, in this study, based on the temperature and precipitation records from 717 meteorological stations, the RClim Dex and random forest models were used to assess the spatiotemporal characteristics of climate change and identify mainly the natural and anthropogenic factors influencing climate change hotspots in the Yangtze River Watershed for the period 1958-2017. The results indicated a significant increasing trend in temperature, a trend of wet and dry polarization in the annual precipitation, and that the number of temperature indices with significant variations was 2.8 times greater than that of precipitation indices. Significant differences were also noted in the responses of the climate change characteristics of the sub-basins to anthropogenic and natural factors;the delta plain of the Yangtze River estuary exhibited the most significant climate changes, where 88.89% of the extreme climate indices varied considerably. Furthermore, the characteristics that were similar among the identified hotpots, including human activities(higher Gross Domestic Product and construction land proportions) and natural factors(high altitudes and large proportions of grassland and water bodies), were positively correlated with the rapid climate warming.
基金The Major Science and Technology Program for Water Pollution Control and Treatment,No.2017ZX07101-001National Natural Science Foundation of China,No.41922003,No.41871080。
文摘Bibliometrics was used to statistically analyze key zones within the Yangtze River Basin(YRB)funded by the National Natural Science Foundation of China(NSFC)and national ministries over the past 20 years.This study determined that funds that derived from national ministries have mainly focused on issues related to environmental pollution,ecological security,technological water regulations,and river basin ecosystems,which offer a better understanding of the national requirements and the scientific knowledge of the YRB in combination with data from the NSFC.Under a background of bolstering the construction of green ecological corridors in the economic belt of the YRB,this study proposes future conceptual watershed research initiatives in this region as a study objective by reinforcing the implementation of the Chinese Ecosystem Research Network(CERN)and by emphasizing the use of new technologies,new methods,and new concepts for the prospective design of frontier research under the perspective of geoscience and earth system science.This study promotes large-scale scientific field and research objectives based on big science and big data.
基金The National Basic Research Program (973 program) (2002CB111506)the R&D Infrastructure and Facility Devel-opment Program (2005DKA32300)
文摘Supported by the spatial analysis feature of geographic information science and assessment model of regional debris flows, hazards degrees of the debris flows in the Upper Yangtze River Watershed (UYRW) are divided into five grades based on grid cell. The area of no danger, light danger, medium danger, severe danger and extreme severe danger regions respectively are 278 000, 288 000, 217 000, 127 000, 15 000 km^2. Furthermore, the counties in the UYRW are classified into four classes based on the hazards degrees in each county. The number of severe danger, medium danger, light danger and no danger counties respectively are 49, 82, 77 and 105. The assessment results will be provided for the hazards forecasting and mitigation in the UYRW and ongoing regionalization of Main Function Regions in China as data and technique framework.
基金partially funded by Chinese Academy of Sciences (Y62302,Y45Z04,Y55Z06,and Y62Z17)World Wide Fund for Nature (Y56002 and Y63Z08)
文摘The Yangtze River is one of the largest and longest rivers in Asia.The river originates in the Tibet-Qinghai Plateau(headwater reach),passes through the mountainous provinces of Sichuan,Yunnan and Chongqing(upper reach),flows into the Central Plain(middle reach)and Lower Plain(lower reach),and finally empties into the East China Sea in Shanghai(estuary).The Yangtze River Economic Belt(YREB;Fig.1)has a surface area of 2.1
文摘As China’s economy has evolved into the so-called new normal stage,the Communist Party of China Central Committee and the State Council have made timely moves to promote the development of the Yangtze River Economic Belt as part of the country’s overall plan for a scientific development of the national economy.In January 2016,a meeting was held in Chongqing discussing