期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
The Impacts of Permafrost Change on NPP and Implications:A Case of the Source Regions of Yangtze and Yellow Rivers 被引量:9
1
作者 FANG Yiping QIN Dahe +2 位作者 DING Yongjian YANG Jianping XU Keyan 《Journal of Mountain Science》 SCIE CSCD 2011年第3期437-447,共11页
This paper studies the relationship between net primary productivity (NPP) and annual average air temperature (GT) at 0cm above ground in permafrost regions by using revised Chikugo NPP model,cubic spline interpolatin... This paper studies the relationship between net primary productivity (NPP) and annual average air temperature (GT) at 0cm above ground in permafrost regions by using revised Chikugo NPP model,cubic spline interpolating functions,and non-linear regression methods.The source regions of the Yangtze and Yellow Rivers were selected as the research areas.Results illustrate that:(1) There is significant non-linear relationship between NPP and GT in various typical years;(2) The maximum value of NPP is 6.17,5.87,7.73,and 5.41 DM·t·hm-2 ·a-1 respectively,and the corresponding GT is 7.1,10.0,21.2,and 8.9 o C respectively in 1980,1990,2000 and 2007;(3) In 1980,the sensitivity of NPP to GT is higher than in 1990,2000 and 2007.This tendency shows that the NPP presents change from fluctuation to an adaptation process over time;(4) During 1980~2007,the accumulated NPP was reduced to 8.05,and the corresponding carrying capacity of theoretical livestock reduced by 11%;(5) The shape of the demonstration region of ecological compensation system,livelihood support system,and science appraisal system in the source regions of Yangtze and Yellow Rivers are an important research for increasing the adaptation capacity and balancing protection and development. 展开更多
关键词 The source regions of yangtze and yellow rivers PERMAFROST Ground temperature (GT) Net primary productivity (NPP) Policy adaptation
下载PDF
Eco-environment range in the source regions of the Yangtze and Yellow rivers 被引量:18
2
作者 DING Yongjian,YANG Jianping,LIU Shiyin,CHEN Rensheng,WANG Genxu,SHEN Yongping,WANG Jian,XIE Changwei,ZHANG Shiqing(Cold and Arid Regions Environmental and Engineering Research Institute, CAS, Lanzhou 730000, China) 《Journal of Geographical Sciences》 SCIE CSCD 2003年第2期172-180,共9页
Based on geographical and hydrological extents delimited, four principles are identified, as the bases for delineating the ranges of the source regions of the Yangtze and Yellow rivers in the paper.... Based on geographical and hydrological extents delimited, four principles are identified, as the bases for delineating the ranges of the source regions of the Yangtze and Yellow rivers in the paper. According to the comprehensive analysis of topographical characteristics, climate conditions, vegetation distribution and hydrological features, the source region ranges for eco-environmental study are defined. The eastern boundary point is Dari hydrological station in the upper reach of the Yellow River. The watershed above Dari hydrological station is the source region of the Yellow River which drains an area of 4.49×10 4 km 2 . Natural environment is characterized by the major topographical types of plateau lakes and marshland, gentle landforms, alpine cold semi-arid climate, and steppe and meadow vegetation in the source region of the Yellow River. The eastern boundary point is the convergent site of the Nieqiaqu and the Tongtian River in the upstream of the Yangtze River. The watershed above the convergent site is the source region of the Yangtze River, with a watershed area of 12.24×10 4 km 2 . Hills and alpine plain topography, gentle terrain, alpine cold arid and semi-arid climate, and alpine cold grassland and meadow are natural conditions in the source region of the Yangtze River. 展开更多
关键词 the source regions of the yangtze and yellow rivers eco-environmental range CLC number:X171.1
下载PDF
Adaptation Management of Mountain Tourism Service: The Case of the Source Regions of the Yangtze and Yellow River 被引量:6
3
作者 FANG Yiping QIN Dahe +1 位作者 DING Yongjian YANG Jianping 《Journal of Mountain Science》 SCIE CSCD 2009年第3期299-310,共12页
Mountain areas are often rich in ecological diversity and recreational opportunities. Mountain tourism is thought to be an effective and important means for maintaining and expanding rural economies and, thus, improvi... Mountain areas are often rich in ecological diversity and recreational opportunities. Mountain tourism is thought to be an effective and important means for maintaining and expanding rural economies and, thus, improving the living conditions of rural societies. As mountain tourism service research is a professional field with several disciplines involved, a multi-disciplinary management pIatform is needed and it facilitates participation in sustainable mountain development by diverse stakeholders. With the source regions of the Yangtze and the Yellow River as a case study, this paper presents a conceptual framework for an adaptation management of mountain tourism services according to technical, policy, social and economic dimensions. The framework is based on a vulnerability assessment of mountain ecosystems, and can serve as a reference for the development of tourism service in other mountain areas. 展开更多
关键词 adaptation management mountain tourism service (MTS) source regions of yangtze and yellow rivers China
下载PDF
Changes in stress within grassland ecosystems in the three counties of the source regions of the Yangtze and Yellow Rivers 被引量:2
4
作者 Fang, YiPing Qin, DaHe Ding, YongJian 《Journal of Arid Land》 SCIE 2010年第2期116-122,共7页
Based on a database of more than 40 years of second production process and energy flow records for Maduo,Qumalai and Yushu counties,a dynamic model of the stress within grassland ecosys-tems was established using a no... Based on a database of more than 40 years of second production process and energy flow records for Maduo,Qumalai and Yushu counties,a dynamic model of the stress within grassland ecosys-tems was established using a nonlinear regression method for this source regions of the Yangtze and Yel-low Rivers.The results show that dynamic curves of stress within grassland ecosystems in the three coun-ties were in the shape of an inverted 'U' during the period 1965-2007.It also revealed that the variation in actual amount of livestock inventories reflected the general trends of the stress within the grassland eco-systems in the source regions,although there were many other factors for the increase or reduction in grassland ecosystem stress. 展开更多
关键词 the source regions of yangtze and yellow rivers the stress within grassland ecosystems inverted 'U' model Driver
下载PDF
Response of vegetation phenology to climate factors in the source region of the Yangtze and Yellow Rivers
5
作者 Qingqing Jiang Zhe Yuan +4 位作者 Jun Yin Mingze Yao Tianling Qin Xizhi Lü Guangdong Wu 《Journal of Plant Ecology》 SCIE CSCD 2024年第5期141-156,共16页
Exploring the impact of climate factors on vegetation phenology is crucial to understanding climate–vegetation interactions as well as carbon and water cycles in ecosystems in the context of climate change.In this ar... Exploring the impact of climate factors on vegetation phenology is crucial to understanding climate–vegetation interactions as well as carbon and water cycles in ecosystems in the context of climate change.In this article,we extracted the vegetation phenology data from 2002 to 2021 based on the dynamic threshold method in the source region of the Yangtze and Yellow Rivers.Trend and correlation analyses were used to investigate the relationship between vegetation phenology and temperature,precipitation and their spatial evolution characteristics.The results showed that:(i)From 2002 to 2021,the multi-year average start of growing season(SOS),end of growing season(EOS)and length of growing season(LOS)for plants were concentrated in May,October and 4–6 months,with a trend of 4.9 days(earlier),1.5 days(later),6.3 days/10 a(longer),respectively.(ii)For every 100 m increase in elevation,SOS,EOS and LOS were correspondingly delayed by 1.8 days,advanced by 0.8 days and shortened by 2.6 days,respectively.(iii)The impacts of temperature and precipitation on vegetation phenology varied at different stages of vegetation growth.Influencing factors of spring phenology experienced a shift from temperature to precipitation,while autumn phenology experienced precipitation followed by temperature.(iv)The climate factors in the previous period significantly affected the vegetation phenology in the study area and the spatial variability was obvious.Specifically,the temperature in April significantly affected the spring phenology and precipitation in August widely affected the autumn phenology. 展开更多
关键词 vegetation phenology climate factor spatiotemporal evolution TERRAIN the source region of the yangtze and yellow rivers
原文传递
Spatio-temporal changes of NDVI and its relation with climatic variables in the source regions of the Yangtze and Yellow rivers 被引量:24
6
作者 YANG Zhaoping GAO Jixi +4 位作者 ZHOU Caiping SHI Peili ZHAO Lin SHEN Wenshou OUYANG Hua 《Journal of Geographical Sciences》 SCIE CSCD 2011年第6期979-993,共15页
The source regions of the Yangtze and Yellow rivers are important water conservation areas of China. In recent years, ecological deterioration trend of the source regions caused by global climate change and unreasonab... The source regions of the Yangtze and Yellow rivers are important water conservation areas of China. In recent years, ecological deterioration trend of the source regions caused by global climate change and unreasonable resource development increased gradually. In this paper, the spatial distribution and dynamic change of vegetation cover in the source regions of the Yangtze and Yellow rivers are analyzed in recent 10 years based on 1-km resolution multi-temporal SPOTVGT-DN data from 1998 to 2007. Meanwhile, the cor- relation relationships between air temperature, precipitation, shallow ground temperature and NDVI, which is 3x3 pixel at the center of Wudaoliang, Tuotuohe, Qumalai, Maduo, and Dari meteorological stations were analyzed. The results show that the NDVI values in these two source regions are increasing in recent 10 years. Spatial distribution of NDVI which was consistent with hydrothermal condition decreased from southeast to northwest of the source regions. NDVI with a value over 0.54 was mainly distributed in the southeastern source region of the Yellow River, and most NDVI values in the northwestern source region of the Yangtze River were less than 0.22. Spatial changing trend of NDVI has great difference and most parts in the source regions of the Yangtze and Yellow rivers witnessed indistinct change. The regions with marked increasing trend were mainly distributed on the south side of the Tongtian River, some part of Keqianqu, Tongtian, Chumaer, and Tuotuo rivers in the source region of the Yangtze River and Xingsuhai, and southern Dari county in the source region of the Yellow River. The regions with very marked increasing tendency were mainly distributed on the south side of Tongtian Rriver and sporadically distributed in hinterland of the source re- gion of the Yangtze River. The north side of Tangula Range in the source region of the Yangtze River and Dari and Maduo counties in the source region of the Yellow River were areas in which NDVI changed with marked decreasing tendency. The NDVI change was positively correlated with average temperature, precipitation and shallow ground temperature. Shallow ground temperature had the greatest effect on NDVI change, and the second greatest factor influencing NDVI was average temperature. The correlation between NDVI and shallow ground temperature in the source regions of the Yangtze and Yellow rivers increased significantly with the depth of soil layer. 展开更多
关键词 source regions of the yangtze and yellow rivers NDVI spatio-temporal change temperature PRECIPITATION shallow ground temperature
原文传递
Fluvial diversity in relation to valley setting in the source region of the Yangtze and Yellow Rivers 被引量:14
7
作者 YU Guo-an LIU Le +6 位作者 LI Zhiwei LI Yanfu HUANG Heqing Gary BRIERLEY Brendon BLUE WANG Zhaoyin PAN Baozhu 《Journal of Geographical Sciences》 SCIE CSCD 2013年第5期817-832,共16页
The spatial distribution of valley setting (laterally-unconfined, partly-confined, or confined) and fluvial morphology in the source region of the Yangtze and Yellow Rivers is contrasted and analyzed. The source reg... The spatial distribution of valley setting (laterally-unconfined, partly-confined, or confined) and fluvial morphology in the source region of the Yangtze and Yellow Rivers is contrasted and analyzed. The source region of the Yangtze River is divided into 3 broad sections (I, II and III) based on valley setting and channel gradient, with the upstream and downstream sections being characterized by confined (some reaches partly-confined) valleys while the middle section is characterized with wide and shallow, laterally-unconfined valleys. Gorges are prominent in sections I and III, while braided channel patterns dominate section II. By contrast, the source region of the Yellow River is divided into 5 broad sections (sections I-V) based on valley characteristics and channel gradient. Sections I, II and IV are alluvial reaches with mainly laterally-unconfined (some short reaches partly-confined) valleys. Sections III and V are mainly confined or partly-confined. Greater morphological diversity is evident in the source region of the Yellow River relative to the upper Yangtze River. This includes braided, anabranching, anastomosing, meandering and straight alluvial patterns, with gorges in confined reaches. The macro-relief (elevation, gradient, aspect, valley alignment and confinement) of the region, linked directly to tectonic movement of the Qinghai-Tibet Plateau, tied to climatic, hydrologic and biotic considerations, are primary controls upon the patterns of river diversity in the region. 展开更多
关键词 valley setting fluvial morphology river patterns spatial distribution source region of the yangtze and yellow rivers
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部