The Yanji area,northeastern China,a part of the orogenic collage between the North China Block in the south and the Jiamusi-Khanka Massifs in the northeast,is the most likely location where the Pacific Plate subductio...The Yanji area,northeastern China,a part of the orogenic collage between the North China Block in the south and the Jiamusi-Khanka Massifs in the northeast,is the most likely location where the Pacific Plate subduction・related magmatic activities and subsequent exhumation processes occurred.Here,we report new low-temperature thermochronology of apatite and zircon data from the granitoid samples in the Yanji area.The exhumation rates of Tianfozhishan,Yanji area,were〜0.049 and〜0.073 mm/year,interpreted from the elevations and apatite and zircon fission track ages,respectively.The exhumation,integrated with the geological setting,suggested that the paleogeothermal gradient of the Tianfozhishan,even extending to the Yanji area,was possibly to be greater than 35℃/km in the Late Cretaceous.The thermal history modeling of the data indicates a basically similar pattern,but the various timing for different samples between the Oligocene-Early Miocene and the Middle Miocene in the Yanji area.We hence conclude that a fourstages of cooling,from〜6.7℃/Ma(during the Late Cretaceous),to〜0.8℃/Ma(during the Late Cretaceous to the Oligocene-Early Miocene),then to〜2-3℃/Ma with varied styles(between the Oligocene-Early Miocene and the Middle Miocene),and finally to<0.2℃/Ma(since the Middle Miocene),has taken place through the exhumation of the Yanji area.The maximum exhumation is>3 km under a reasonable paleogeothermal gradient(>35℃/km),speculated from the possible exhumation rate of Tianfozhishan.Combined with the tectonic setting,this exhumation,including two stages of pronounced tectonic uplift and denudation and two stages of weak exhumation driven by the low regional erosion rate,is possibly related to the subduction of the Pacific Plate beneath the Eurasian Plate since the Late Cretaceous.This study used more robust evidence to propose higher paleogeothermal gradient(>35℃/km),reflecting exhumation of>3 km in the Yanji area since the Late Cretaceous.展开更多
Ar-Ar dating results of late Mesozoic-Cenozoic volcanic rocks from the Yanji area, NE China provide a new volcano-sedimentary stratigraphic framework. The previously defined “Triassic-Jurassic” volcanic rocks (inclu...Ar-Ar dating results of late Mesozoic-Cenozoic volcanic rocks from the Yanji area, NE China provide a new volcano-sedimentary stratigraphic framework. The previously defined “Triassic-Jurassic” volcanic rocks (including those from Sanxianling, Tuntianying, Tianqiaoling and Jingouling Fms.) were erupted during 118―106 Ma, corresponding to Early Cretaceous. The new eruption age span is slightly younger than the main stage (130―120 Ma) of the extensive magmatism in the eastern Central Asian Orogenic Belt and its adjacent regions. Subduction-related adakites occurring in the previously defined Quanshuicun Fm. were extruded at ca. 55 Ma. Based on these new Ar-Ar ages, the late Mesozoic to Palaeocene volcano-sedimentary sequences is rebuilt as: Tuopangou Fm., Sanxianling/Tuntianying Fm. (118―115 Ma), Malugou/Tianqiaoling Fm. (K1), Huoshanyan/Jingouling Fm. (108―106 Ma), Changcai Fm. (K2), Quanshuicun Fm. (~55 Ma) and Dalazi Fm. Our results suggest that subduction of the Pa- laeo-Pacific Ocean beneath the East Asian continental margin occurred during 106 to 55 Ma, consistent with the paleomagnetic observations and magmatic records which indicated that the Izanagi-Farallon ridge subduction beneath the southwestern Japan took place during 95―65 Ma.展开更多
基金supported by the DREAM project of MOST China (2016YFC0600406)the National Natural Science Foundation of China (Grant Nos. 41072158, 41372227)
文摘The Yanji area,northeastern China,a part of the orogenic collage between the North China Block in the south and the Jiamusi-Khanka Massifs in the northeast,is the most likely location where the Pacific Plate subduction・related magmatic activities and subsequent exhumation processes occurred.Here,we report new low-temperature thermochronology of apatite and zircon data from the granitoid samples in the Yanji area.The exhumation rates of Tianfozhishan,Yanji area,were〜0.049 and〜0.073 mm/year,interpreted from the elevations and apatite and zircon fission track ages,respectively.The exhumation,integrated with the geological setting,suggested that the paleogeothermal gradient of the Tianfozhishan,even extending to the Yanji area,was possibly to be greater than 35℃/km in the Late Cretaceous.The thermal history modeling of the data indicates a basically similar pattern,but the various timing for different samples between the Oligocene-Early Miocene and the Middle Miocene in the Yanji area.We hence conclude that a fourstages of cooling,from〜6.7℃/Ma(during the Late Cretaceous),to〜0.8℃/Ma(during the Late Cretaceous to the Oligocene-Early Miocene),then to〜2-3℃/Ma with varied styles(between the Oligocene-Early Miocene and the Middle Miocene),and finally to<0.2℃/Ma(since the Middle Miocene),has taken place through the exhumation of the Yanji area.The maximum exhumation is>3 km under a reasonable paleogeothermal gradient(>35℃/km),speculated from the possible exhumation rate of Tianfozhishan.Combined with the tectonic setting,this exhumation,including two stages of pronounced tectonic uplift and denudation and two stages of weak exhumation driven by the low regional erosion rate,is possibly related to the subduction of the Pacific Plate beneath the Eurasian Plate since the Late Cretaceous.This study used more robust evidence to propose higher paleogeothermal gradient(>35℃/km),reflecting exhumation of>3 km in the Yanji area since the Late Cretaceous.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 40373018 and 40334043) the Chinese Academy of Sciences (Grant Nos. KZCX2-104 and GIGCX-04-04)
文摘Ar-Ar dating results of late Mesozoic-Cenozoic volcanic rocks from the Yanji area, NE China provide a new volcano-sedimentary stratigraphic framework. The previously defined “Triassic-Jurassic” volcanic rocks (including those from Sanxianling, Tuntianying, Tianqiaoling and Jingouling Fms.) were erupted during 118―106 Ma, corresponding to Early Cretaceous. The new eruption age span is slightly younger than the main stage (130―120 Ma) of the extensive magmatism in the eastern Central Asian Orogenic Belt and its adjacent regions. Subduction-related adakites occurring in the previously defined Quanshuicun Fm. were extruded at ca. 55 Ma. Based on these new Ar-Ar ages, the late Mesozoic to Palaeocene volcano-sedimentary sequences is rebuilt as: Tuopangou Fm., Sanxianling/Tuntianying Fm. (118―115 Ma), Malugou/Tianqiaoling Fm. (K1), Huoshanyan/Jingouling Fm. (108―106 Ma), Changcai Fm. (K2), Quanshuicun Fm. (~55 Ma) and Dalazi Fm. Our results suggest that subduction of the Pa- laeo-Pacific Ocean beneath the East Asian continental margin occurred during 106 to 55 Ma, consistent with the paleomagnetic observations and magmatic records which indicated that the Izanagi-Farallon ridge subduction beneath the southwestern Japan took place during 95―65 Ma.