The electrochemical behavior of Yb3+ and electrodeposition of Mg-Yb alloy film at solid magnesium cathode in the molten LiCl-KCl-YbCl3(2 wt.%) system at 773 K was investigated.Transient electrochemical techniques,such...The electrochemical behavior of Yb3+ and electrodeposition of Mg-Yb alloy film at solid magnesium cathode in the molten LiCl-KCl-YbCl3(2 wt.%) system at 773 K was investigated.Transient electrochemical techniques,such as cyclic voltammetry,chronopotentiometry and chronoamperometry were used in order to explore the deposition mechanism of Yb.The reduction process of Yb3+ is stepwise reactions which are single-electron and double-electron reversible charge transfer reactions.The speed control step was a diffu...展开更多
Ce3+, Yb3+ co-doped Y3Al5O12 films were prepared by pulse laser deposition. X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence spectra were used to characterize their structural and luminescent p...Ce3+, Yb3+ co-doped Y3Al5O12 films were prepared by pulse laser deposition. X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence spectra were used to characterize their structural and luminescent properties. Near-infrared quantum cutting from the films was observed via a cooperative energy transfer from Ce3+ to Yb3+ ions. The high quantum efficiency of the films implies that Ce3+,Yb3+ co-doped Y3A15O12 films have potential application by tuning the solar spectrum to enhance the efficiency of silicon solar cells.展开更多
Deposition of Yb-Bi thin films was carried out from a nonaqueous solution by using cyclic electrodepositon. During electrodeposition the substrate potential was continuously cycled between two potentials. The effects ...Deposition of Yb-Bi thin films was carried out from a nonaqueous solution by using cyclic electrodepositon. During electrodeposition the substrate potential was continuously cycled between two potentials. The effects of several factors including the potential of deposition, time of deposition and sweep rate on the Yb content in the thin films and surface morphology were studied. Experimental results indicate that the amorphous Yb-Bi thin films containing Yb 21.04%~36.36% (mass fraction) can be prepared in 0.10 mol·L^(-1) YbCl_3+0.10 mol·L^(-1) Bi(NO_3)_3+0.10 mol·L^(-1) LiCl+DMSO by controlling deposition conditions of the system. They are black, uniform, metallic luster and adhered firmly to the copper substrates. The films were characterized by X-ray energy dispersive analysis (EDS), scanning electron microcoscope (SEM) and X-ray diffraction (XRD).展开更多
The nonuniform Yb-Er Codoped Al2O3 films were prepared on SiO2/Si substrates using a medium frequency magnetron sputtering system. Two asymmetry targets in the system were introduced to realize the nonuniform dopant. ...The nonuniform Yb-Er Codoped Al2O3 films were prepared on SiO2/Si substrates using a medium frequency magnetron sputtering system. Two asymmetry targets in the system were introduced to realize the nonuniform dopant. Some curves of Photoluminescence (PL) peak intensity were obtained by adjusting the deposition parameters, such as, the pillar number of erbium and ytterbium in the mixed target and the distance between a sample table and targets. Typically, the curve of PL peak intensity against the offset distance was approximately linear. The ratio of the PL intensity at the two ends of the same sample was 12.6 and the slope was 71.83/mm when the pillar numbers of the erbium and ytterbium in the mixed target are 5 and 60, respectively, and the distance between targets and the sample table is 2.9 cm.展开更多
Pure WOand Yb:WOthin films have been synthesized by spray pyrolysis technique. Effect of Yb doping concentration on photoelectrochemical, structural, morphological and optical properties of thin films are studied. X-r...Pure WOand Yb:WOthin films have been synthesized by spray pyrolysis technique. Effect of Yb doping concentration on photoelectrochemical, structural, morphological and optical properties of thin films are studied. X-ray diffraction analysis shows that all thin films are polycrystalline nature and exhibit monoclinic crystal structure. The 3 at% Yb:WOfilm shows superior photoelectrochemical(PEC) performance than that of pure WOfilm and it shows maximum photocurrent density(Iph= 1090 μA/cm) having onset potentials around +0.3 V/SCE in 0.01 M HClO. The photoelectrocatalytic process is more effective than that of the photocatalytic process for degradation of methyl orange(MO) dye. Yb doping in WOphotocatalyst is greatly effective to degrade MO dye. The enhancement in photoelectrocatalytic activity is mainly due to the suppressing the recombination rate of photogenerated electron-hole pairs. The mineralization of MO dye in aqueous solution is studied by measuring chemical oxygen demand(COD) values.展开更多
基金supported by 863 Project of Ministry of Science and Technology of China (2006AA03Z510)the National Natural Science Foundation of China (50871033)+1 种基金the Scientific Technology Project of Heilongjiang Province (GC06A212)the fund from Harbin Municipal Science & Technology Bureau (2006PFXXG006)
文摘The electrochemical behavior of Yb3+ and electrodeposition of Mg-Yb alloy film at solid magnesium cathode in the molten LiCl-KCl-YbCl3(2 wt.%) system at 773 K was investigated.Transient electrochemical techniques,such as cyclic voltammetry,chronopotentiometry and chronoamperometry were used in order to explore the deposition mechanism of Yb.The reduction process of Yb3+ is stepwise reactions which are single-electron and double-electron reversible charge transfer reactions.The speed control step was a diffu...
基金Funded by the China Postdoctoral Science Foundation(No.2012M511801)the National Natural Science Foundation of China(Nos.11474104 and 51372092)
文摘Ce3+, Yb3+ co-doped Y3Al5O12 films were prepared by pulse laser deposition. X-ray diffraction, X-ray photoelectron spectroscopy, photoluminescence spectra were used to characterize their structural and luminescent properties. Near-infrared quantum cutting from the films was observed via a cooperative energy transfer from Ce3+ to Yb3+ ions. The high quantum efficiency of the films implies that Ce3+,Yb3+ co-doped Y3A15O12 films have potential application by tuning the solar spectrum to enhance the efficiency of silicon solar cells.
文摘Deposition of Yb-Bi thin films was carried out from a nonaqueous solution by using cyclic electrodepositon. During electrodeposition the substrate potential was continuously cycled between two potentials. The effects of several factors including the potential of deposition, time of deposition and sweep rate on the Yb content in the thin films and surface morphology were studied. Experimental results indicate that the amorphous Yb-Bi thin films containing Yb 21.04%~36.36% (mass fraction) can be prepared in 0.10 mol·L^(-1) YbCl_3+0.10 mol·L^(-1) Bi(NO_3)_3+0.10 mol·L^(-1) LiCl+DMSO by controlling deposition conditions of the system. They are black, uniform, metallic luster and adhered firmly to the copper substrates. The films were characterized by X-ray energy dispersive analysis (EDS), scanning electron microcoscope (SEM) and X-ray diffraction (XRD).
基金Project supported by the National Natural Science Foundation of China (60477023)the Natural Science Foundation of Science and Tech-nology Commission of Liaoning Province (20062137)
文摘The nonuniform Yb-Er Codoped Al2O3 films were prepared on SiO2/Si substrates using a medium frequency magnetron sputtering system. Two asymmetry targets in the system were introduced to realize the nonuniform dopant. Some curves of Photoluminescence (PL) peak intensity were obtained by adjusting the deposition parameters, such as, the pillar number of erbium and ytterbium in the mixed target and the distance between a sample table and targets. Typically, the curve of PL peak intensity against the offset distance was approximately linear. The ratio of the PL intensity at the two ends of the same sample was 12.6 and the slope was 71.83/mm when the pillar numbers of the erbium and ytterbium in the mixed target are 5 and 60, respectively, and the distance between targets and the sample table is 2.9 cm.
基金University Grants Commission(UGC),New Delhi,for the financial support through the project No.‘‘41-869/2012(SR)’’
文摘Pure WOand Yb:WOthin films have been synthesized by spray pyrolysis technique. Effect of Yb doping concentration on photoelectrochemical, structural, morphological and optical properties of thin films are studied. X-ray diffraction analysis shows that all thin films are polycrystalline nature and exhibit monoclinic crystal structure. The 3 at% Yb:WOfilm shows superior photoelectrochemical(PEC) performance than that of pure WOfilm and it shows maximum photocurrent density(Iph= 1090 μA/cm) having onset potentials around +0.3 V/SCE in 0.01 M HClO. The photoelectrocatalytic process is more effective than that of the photocatalytic process for degradation of methyl orange(MO) dye. Yb doping in WOphotocatalyst is greatly effective to degrade MO dye. The enhancement in photoelectrocatalytic activity is mainly due to the suppressing the recombination rate of photogenerated electron-hole pairs. The mineralization of MO dye in aqueous solution is studied by measuring chemical oxygen demand(COD) values.