Generation of noise-like rectangular pulse was investigated systematically in an Er–Yb co-doped fiber laser based on an intra-cavity coupler with different coupling ratios.When the coupling ratio was 5/95,stable mode...Generation of noise-like rectangular pulse was investigated systematically in an Er–Yb co-doped fiber laser based on an intra-cavity coupler with different coupling ratios.When the coupling ratio was 5/95,stable mode-locked pulses could be obtained with the pulse packet duration tunable from 4.86 ns to 80 ns.The repetition frequency was 1.186 MHz with the output spectrum centered at 1.6μm.The average output power and single pulse energy reached a record 1.43 W and1.21μJ,respectively.Pulse characteristics under different coupling ratios(5/95,10/90,20/80,30/70,40/60)were also presented and discussed.展开更多
We demonstrate a diode pumped Yb:LuVO4 laser that can be passively Q-switched by a Cr^(4+):YAG saturable absorber having an initial transmission as high as 99.3%.A maximum pulsed output power of 2.35 W is generat...We demonstrate a diode pumped Yb:LuVO4 laser that can be passively Q-switched by a Cr^(4+):YAG saturable absorber having an initial transmission as high as 99.3%.A maximum pulsed output power of 2.35 W is generated at a repetition rate of 285.7 kHz,approaching or very near the intrinsic upper limit imposed by the recovery time of the Cr^(4+):YAG saturable absorber,and the resulting pulse energy,duration and peak power are,respectively,8.2μJ,39.2ns and 0.209kW.展开更多
We report the repetitively Q-switched laser operation of the Yb-doped calcium niobium gallium garnet disordered garnet crystal, achieved with an acousto-optic modulator in a compact plano-concave resonator that is end...We report the repetitively Q-switched laser operation of the Yb-doped calcium niobium gallium garnet disordered garnet crystal, achieved with an acousto-optic modulator in a compact plano-concave resonator that is endpumped by a 935-nm diode laser. An average output power of 1.96 W is produced at pulse repetition rate of50 k Hz at emission wavelengths around 1035 nm, with a slope efficiency of 16%. The highest pulse energy of 269 μJ is generated at pulse repetition rate of 1 k Hz, with pulse width 12.1 ns and peak power 20.53 kW.展开更多
We demonstrate a widely tunable near-infrared source from 767 nm to 874 nm generated by the intracavity second harmonic generation (SHG) in an optical parametric oscillator pumped by a Yb:LYSO solid-state laser. Th...We demonstrate a widely tunable near-infrared source from 767 nm to 874 nm generated by the intracavity second harmonic generation (SHG) in an optical parametric oscillator pumped by a Yb:LYSO solid-state laser. The home-made Yb:LYSO oscillator centered at 1035 nm delivers an average power of 2 W and a pulse duration as short as 351 fs. TWo MgO doped periodically poled lithium niobates (MgO:PPLN) with grating periods of 28.5-31.5 μm in steps of 0.5 μm and 19.5-21.3μm in steps of 0.2 μm are used for the OPO and intracavity SHG, respectively. The maximum average output power of 180 mW at 798 nm was obtained and the output pulses have pulse duration of 313 fs at 792 nm if a sech2-pulse shape was assumed. In addition, tunable signal femtosecond pulses from 1428 nm to 1763 nm are also realized with the maximum average power of 355 mW at 1628 nm.展开更多
A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the re...A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the repetition rate of 113 MHz. To the best of our knowledge, this is the shortest pulse duration ever produced from the Yb-doped orthosilicates lasers family.展开更多
The performances of high power Er/Yb codoped fiber linear cavity lasers are investigated numerically. The numerical analysis is based on the iterative solution of rate equations for population density of the Er/Yb ion...The performances of high power Er/Yb codoped fiber linear cavity lasers are investigated numerically. The numerical analysis is based on the iterative solution of rate equations for population density of the Er/Yb ions. The behaviors of co-pump and counter-pump methods are contrasted. Dependence of output power on input pump power, output reflectivity, operating wavelength and active fiber length is simulated, respectively. High conversion efficiency Er/Yb laser output is obtained in simulations and experiments.展开更多
The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings cent...The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings centered at 1029.9nm and 1032nm respectively with a polarization controller inserted between them are used to realize the wavelength switchable between 1029.9nm and 1032nm. The laser delivers different pulse widths of 7.5ps for 1030nm and 20ps for 1032nm. The maximum output power for both could reach -6.5mW at single pulse operation. The output wavelength couM be tuned to about 0.gnm intervals ranging from 1030.2nm to 1031.1 nm and from 1032.15nm to 1033.7nm with the temperature change of the fiber Bragg grating, respectively.展开更多
Highly transparent Yb,Ho doped(YLa)2O3 ceramic was fabricated by conventional ceramic processing with nanopowders.The absorption and emission spectra of the ceramic was investigated.The energy transfer mechanism bet...Highly transparent Yb,Ho doped(YLa)2O3 ceramic was fabricated by conventional ceramic processing with nanopowders.The absorption and emission spectra of the ceramic was investigated.The energy transfer mechanism between Yb3+ and Ho3+ was also discussed.The strong emission band around 2 μm indicated that the Yb-Ho:(Y 0.90 La 0.10)2O3 transparent ceramic is a promising gain medium for the generation of 2 μm laser emissions.The laser operation of Yb-Ho co-doped(YLa)2O3 ceramic at 2.1 μm is first reported.展开更多
We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dis...We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained.展开更多
The Yb3^+ -doped silicate, phosphate and borophosphate laser glasses were prepared by means of conventional melt quenching technology. The physical and spectral properties of the glasses were investigated. The result...The Yb3^+ -doped silicate, phosphate and borophosphate laser glasses were prepared by means of conventional melt quenching technology. The physical and spectral properties of the glasses were investigated. The results show that, due to the existence of OH^-, the fluorescence lifetime of phosphate glass is shorter than that of silicate glass, so silicate glass has better spectral properties than phosphate glass. Silicate glass has better mechanical and thermal properties than phosphate glass, but with the addition of B2O3, mechanical and thermal properties of phosphate glass are improved greatly without fluorescence quenching effect. This kind of borophosphate glass can be used in high average power solid state lasers.展开更多
An all-fiber laser using a single-walled carbon nanotube(SWCNT) as the saturable absorber(SA) for Q-switched operation in the 1031 nm region is demonstrated in this work. A lasing threshold as low as 17 mW was rea...An all-fiber laser using a single-walled carbon nanotube(SWCNT) as the saturable absorber(SA) for Q-switched operation in the 1031 nm region is demonstrated in this work. A lasing threshold as low as 17 mW was realized for continuous wave operation. By further increasing the pump power, stable Q-switched pulse trains are obtained when the pump power ranges from 38 mW to 125 mW, corresponding to repetition rate varying from 40.84 kHz to 66.24 kHz, the pulse width from 2.0 μs to 1.0 μs,and the highest single pulse energy of 40.6 nJ respectively.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61435009,61235008,and 61405254)
文摘Generation of noise-like rectangular pulse was investigated systematically in an Er–Yb co-doped fiber laser based on an intra-cavity coupler with different coupling ratios.When the coupling ratio was 5/95,stable mode-locked pulses could be obtained with the pulse packet duration tunable from 4.86 ns to 80 ns.The repetition frequency was 1.186 MHz with the output spectrum centered at 1.6μm.The average output power and single pulse energy reached a record 1.43 W and1.21μJ,respectively.Pulse characteristics under different coupling ratios(5/95,10/90,20/80,30/70,40/60)were also presented and discussed.
基金Supported by the National Natural Science Foundation of China under Grant No 11574170
文摘We demonstrate a diode pumped Yb:LuVO4 laser that can be passively Q-switched by a Cr^(4+):YAG saturable absorber having an initial transmission as high as 99.3%.A maximum pulsed output power of 2.35 W is generated at a repetition rate of 285.7 kHz,approaching or very near the intrinsic upper limit imposed by the recovery time of the Cr^(4+):YAG saturable absorber,and the resulting pulse energy,duration and peak power are,respectively,8.2μJ,39.2ns and 0.209kW.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274188 and 11574170
文摘We report the repetitively Q-switched laser operation of the Yb-doped calcium niobium gallium garnet disordered garnet crystal, achieved with an acousto-optic modulator in a compact plano-concave resonator that is endpumped by a 935-nm diode laser. An average output power of 1.96 W is produced at pulse repetition rate of50 k Hz at emission wavelengths around 1035 nm, with a slope efficiency of 16%. The highest pulse energy of 269 μJ is generated at pulse repetition rate of 1 k Hz, with pulse width 12.1 ns and peak power 20.53 kW.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB922402)the National Key Scientific Instruments Development Program of China(Grant No.2012YQ120047)+1 种基金the National Natural Science Foundation of China(Grant Nos.61205130 and 11174361)the Key Deployment Project of Chinese Academy of Sciences(Grant No.KJZD-EW-L11-03)
文摘We demonstrate a widely tunable near-infrared source from 767 nm to 874 nm generated by the intracavity second harmonic generation (SHG) in an optical parametric oscillator pumped by a Yb:LYSO solid-state laser. The home-made Yb:LYSO oscillator centered at 1035 nm delivers an average power of 2 W and a pulse duration as short as 351 fs. TWo MgO doped periodically poled lithium niobates (MgO:PPLN) with grating periods of 28.5-31.5 μm in steps of 0.5 μm and 19.5-21.3μm in steps of 0.2 μm are used for the OPO and intracavity SHG, respectively. The maximum average output power of 180 mW at 798 nm was obtained and the output pulses have pulse duration of 313 fs at 792 nm if a sech2-pulse shape was assumed. In addition, tunable signal femtosecond pulses from 1428 nm to 1763 nm are also realized with the maximum average power of 355 mW at 1628 nm.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922402the National Key Scientific Instrument and Equipment Development Project under Grant No 2012YQ120047+1 种基金the Fundamental Research Funds for the Central Universities under Grant No JB140502the National Natural Science Foundation of China under Grant Nos 11174361 and61205130
文摘A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the repetition rate of 113 MHz. To the best of our knowledge, this is the shortest pulse duration ever produced from the Yb-doped orthosilicates lasers family.
基金National Natural Science Foundation of China ( 60137010 ) Tianjin Key Project Foundation of China(033183611)
文摘The performances of high power Er/Yb codoped fiber linear cavity lasers are investigated numerically. The numerical analysis is based on the iterative solution of rate equations for population density of the Er/Yb ions. The behaviors of co-pump and counter-pump methods are contrasted. Dependence of output power on input pump power, output reflectivity, operating wavelength and active fiber length is simulated, respectively. High conversion efficiency Er/Yb laser output is obtained in simulations and experiments.
基金Supported by the National High Technology Research and Development Program of China under Grant No 2014AA041901NSAF Foundation of the National Natural Science Foundation of China under Grant No U1330134+1 种基金the Opening Project of Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques under Grant No 2012ADL02the National Natural Science Foundation of China under Grant Nos 61308024 and 11174305
文摘The wavelength-tunable and switchable narrow bandwidth mode-locking operation is demonstrated in an all fiber laser based on semiconductor-saturable absorber mirror (SESAM). Two narrow-band fiber Bragg gratings centered at 1029.9nm and 1032nm respectively with a polarization controller inserted between them are used to realize the wavelength switchable between 1029.9nm and 1032nm. The laser delivers different pulse widths of 7.5ps for 1030nm and 20ps for 1032nm. The maximum output power for both could reach -6.5mW at single pulse operation. The output wavelength couM be tuned to about 0.gnm intervals ranging from 1030.2nm to 1031.1 nm and from 1032.15nm to 1033.7nm with the temperature change of the fiber Bragg grating, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60578041)the Sciences and Technology Commission Foundation of Shanghai,China (Grant No. 08520707300)+1 种基金the Key Basic Research Project of Science and Technology Commission of Shanghai,China (Grant No. 09JC1406500)the Graduate Student Innovation Fund of Shanghai University,China (Grant No. SHUCX120058)
文摘Highly transparent Yb,Ho doped(YLa)2O3 ceramic was fabricated by conventional ceramic processing with nanopowders.The absorption and emission spectra of the ceramic was investigated.The energy transfer mechanism between Yb3+ and Ho3+ was also discussed.The strong emission band around 2 μm indicated that the Yb-Ho:(Y 0.90 La 0.10)2O3 transparent ceramic is a promising gain medium for the generation of 2 μm laser emissions.The laser operation of Yb-Ho co-doped(YLa)2O3 ceramic at 2.1 μm is first reported.
文摘We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained.
文摘The Yb3^+ -doped silicate, phosphate and borophosphate laser glasses were prepared by means of conventional melt quenching technology. The physical and spectral properties of the glasses were investigated. The results show that, due to the existence of OH^-, the fluorescence lifetime of phosphate glass is shorter than that of silicate glass, so silicate glass has better spectral properties than phosphate glass. Silicate glass has better mechanical and thermal properties than phosphate glass, but with the addition of B2O3, mechanical and thermal properties of phosphate glass are improved greatly without fluorescence quenching effect. This kind of borophosphate glass can be used in high average power solid state lasers.
基金Project supported by the National Key Scientific Instruments Development Program of China(Grant No.2012YQ120047)
文摘An all-fiber laser using a single-walled carbon nanotube(SWCNT) as the saturable absorber(SA) for Q-switched operation in the 1031 nm region is demonstrated in this work. A lasing threshold as low as 17 mW was realized for continuous wave operation. By further increasing the pump power, stable Q-switched pulse trains are obtained when the pump power ranges from 38 mW to 125 mW, corresponding to repetition rate varying from 40.84 kHz to 66.24 kHz, the pulse width from 2.0 μs to 1.0 μs,and the highest single pulse energy of 40.6 nJ respectively.