The possibility of preparing cementitious materials by the alkali-activated method using Yellow River sediment(The second largest river in China)as raw material and the modification effect on different slag addition w...The possibility of preparing cementitious materials by the alkali-activated method using Yellow River sediment(The second largest river in China)as raw material and the modification effect on different slag addition were investigated.Sodium silicate and calcium hydroxide were used as the activator,and the specimens were prepared by the press molding method.The hydration process,hydration products,pore characteristics,and mechanical properties were investigated using SEM/EDS,FTIR,TG/DTG,XRD,MIP,and uniaxial compressive strength experiments,respectively.The results showed that the compressive strength of the modified yellow river silt-based cementitious material was significantly increased when the water glass dosage was 12 wt%(Ms=1.8)and the slag dosage was 40%,and its 90-day maximum compressive strength could reach 53 MPa.展开更多
Currently,the application of the Yellow River silt in subgrade,especially in expressway subgrade,has not been widely promoted.The main reason is that the research on the mechanical characteristics of the Yellow River ...Currently,the application of the Yellow River silt in subgrade,especially in expressway subgrade,has not been widely promoted.The main reason is that the research on the mechanical characteristics of the Yellow River silt used for subgrade filling is extremely limited.In this study,the static shear test of the Yellow River silt under drained condition was carried out using Global Digital Systems(GDS)triaxial apparatus,and the effects of confining pressure,relative density and shear rate on the strength and deformation behavior of the Yellow River silt were investigated.The cohesive force of the Yellow River silt is low,and the friction angle is the main factor determining the shear strength.Friction angle at phase transformation stateφpt,friction angle at peak stateφps,friction angle at critical stateφcs,were obtained via the observation on the evolution law of mobilized friction angle during the whole shearing process.The friction angles corresponding to three different characteristic states have the following magnitude relationship,namelyφps>φcs>φpt.The strength parameters for low-grade subgrade and highgrade subgrade were chosen to be 29.33°and 33.75°.The critical state line(CSL),envelop of phase transformation(EOP),and envelop of dilatancy(EOD)for three different characteristic states were determined.The critical stress ratio M,the phase transformation stress ratio Mptand the dilatancy stress ratio Mdof the Yellow River silt are 1.199,1.235,1.152,respectively.These results provide a basis for the mechanical analysis of the Yellow River silt subgrades and the subsequent establishment of dynamic constitutive model of the Yellow River silt.展开更多
Frothing is a main disease of highways in Yellow River Flood Field, due to the loss of dynamic strength of roadbed soils under the couple effects of temperature, salt, and vehicle traffic load. This is strongly linked...Frothing is a main disease of highways in Yellow River Flood Field, due to the loss of dynamic strength of roadbed soils under the couple effects of temperature, salt, and vehicle traffic load. This is strongly linked to the dynamic characteristics of silt in this region. To analyze these couple effects on the dynamic characteristics of silt, a series of tests(i.e., freeze-thaw cycling tests, vibration triaxial tests and ultrasonic wave velocity tests) were conducted and two kinds of silt(i.e., salt-free and 3%-salt silt) were designed. The results indicate that the dynamic shear strength and dynamic modulus decrease with increasing freeze-thaw cycles, while the damping ratio simultaneously increases. Furthermore, compared to salt-free silt, the decrement of dynamic shear strength and dynamic modulus of silt with 3% salt is more significant, but the damping ratio of 3%-salt silt is larger. In ultrasonic wave velocity tests, ultrasonic wave velocity of frozen soil specimens decreases as the number of freeze-thaw cycles increases. Based on the results of ultrasonic wave velocity tests, a preliminary model is proposed to evaluate damage of silt through field measurement ultrasonic data. The study could provide a theoretical basis for the treatment of silty soil highway.展开更多
Partial drainage often occurs during piezocone penetration testing on Yellow River Delta silt because of its intermediate physical and mechanical properties between those of sand and clay.Yet,there is no accurate unde...Partial drainage often occurs during piezocone penetration testing on Yellow River Delta silt because of its intermediate physical and mechanical properties between those of sand and clay.Yet,there is no accurate understanding for the range of penetra-tion rates to trigger the partial drainage of silt soils.In order to fully investigate cone penetration rate effects under partial drainage condi-tions,indoor 1 g penetration model tests and numerical simulations of cavity expansion at variable penetration rates were carried out on the Yellow River Delta silt.The boundary effect of the model tests and the variation of key parameters at the different cavity ex-pansion rates were analyzed.The 1 g penetration model test results and numerical simulations results consistently indicated that the penetration rate to trigger the partially drainage of typical silt varied at least three orders of magnitude.The numerical simulations also provide the reference values for the penetration resistance corresponding to zero dilation and zero viscosity at any given normalized penetration rate for silt in Yellow River Delta.These geotechnical properties can be used for the design of offshore platforms in Yel-low River Delta,and the understanding of cone penetration rate effects under the partially drained conditions would provide some technical support for geohazard evaluation of offshore platforms.展开更多
The thermal conductivity of marine sediments is an important thermophysical parameter in the study of seafloor heat flow and marine engineering construction.Understanding the effect of thermal conductivity of marine s...The thermal conductivity of marine sediments is an important thermophysical parameter in the study of seafloor heat flow and marine engineering construction.Understanding the effect of thermal conductivity of marine sediments in the environment has a major engineering value and theoretical significance.In this work,a modified test method was used to measure the thermal conductivity of silt in the Yellow River Delta under different void ratios,moisture contents,temperatures,and salinities.Results showed that the thermal conductivity of silt in the Yellow River Delta decreased with the increase in the void ratio and increased with the water content.Compared with sand and clay,silt in the Yellow River Delta was the least affected by the void ratio and moisture content.Under low temperatures,the heat transfer of soil was controlled by the average velocity of the phonons;therefore,the thermal conductivity of silt in the Yellow River Estuary increased with temperature.The thermal conductivity of pore water decreased with increasing salinity.Moreover,certain salinity levels resulted in a phenomenon known as the‘compressing twin electrical layer’,which led to an increase in the contact area between soil particles.With the increase in salinity,the thermal conductivity of silt in the Yellow River Delta experiences an initial decline and a subsequent increase.The proposed thermal conductivity test method is more accurate than the existing technique,and the findings provide a basis for further study on the thermal characteristics of submarine sediments.展开更多
基金Funded in part by the Joint Funds of National Natural Science Foundation of China(No.U20A20324)National Natural Science Foundation of China(No.51878116)+3 种基金Liaoning Province Key Project of Research and Development Plan(No.2020JH2/10100016)Dalian Science and Technology Innovation Fund Project(No.2020JJ26SN060)the National Natural Science Foundation of China(No.51809109)the National Key Research and Development Projects(No.2017YFC0504506)。
文摘The possibility of preparing cementitious materials by the alkali-activated method using Yellow River sediment(The second largest river in China)as raw material and the modification effect on different slag addition were investigated.Sodium silicate and calcium hydroxide were used as the activator,and the specimens were prepared by the press molding method.The hydration process,hydration products,pore characteristics,and mechanical properties were investigated using SEM/EDS,FTIR,TG/DTG,XRD,MIP,and uniaxial compressive strength experiments,respectively.The results showed that the compressive strength of the modified yellow river silt-based cementitious material was significantly increased when the water glass dosage was 12 wt%(Ms=1.8)and the slag dosage was 40%,and its 90-day maximum compressive strength could reach 53 MPa.
基金National Natural Science Foundation of China(Grant Nos.5217836952109140)+4 种基金Key Projects of High Schools of Henan province of China(20A560021)Natural Science Foundation of Henan Province of China(202300410424)Youth Talent Promotion Project of Henan Province of China(2021HYTP016)Key Specialized Research and Development Breakthrough in Henan Province of China(212102310977)China Postdoctoral Science Foundation(2019M662533)。
文摘Currently,the application of the Yellow River silt in subgrade,especially in expressway subgrade,has not been widely promoted.The main reason is that the research on the mechanical characteristics of the Yellow River silt used for subgrade filling is extremely limited.In this study,the static shear test of the Yellow River silt under drained condition was carried out using Global Digital Systems(GDS)triaxial apparatus,and the effects of confining pressure,relative density and shear rate on the strength and deformation behavior of the Yellow River silt were investigated.The cohesive force of the Yellow River silt is low,and the friction angle is the main factor determining the shear strength.Friction angle at phase transformation stateφpt,friction angle at peak stateφps,friction angle at critical stateφcs,were obtained via the observation on the evolution law of mobilized friction angle during the whole shearing process.The friction angles corresponding to three different characteristic states have the following magnitude relationship,namelyφps>φcs>φpt.The strength parameters for low-grade subgrade and highgrade subgrade were chosen to be 29.33°and 33.75°.The critical state line(CSL),envelop of phase transformation(EOP),and envelop of dilatancy(EOD)for three different characteristic states were determined.The critical stress ratio M,the phase transformation stress ratio Mptand the dilatancy stress ratio Mdof the Yellow River silt are 1.199,1.235,1.152,respectively.These results provide a basis for the mechanical analysis of the Yellow River silt subgrades and the subsequent establishment of dynamic constitutive model of the Yellow River silt.
基金Project(2018YFB1600100) supported by the National Key Research and Development Project of ChinaProjects(51778346, 51508310) supported by the National Natural Science Foundation of ChinaProject(2019GSF111007) supported by Key Research and Development Project of Shandong Province, China。
文摘Frothing is a main disease of highways in Yellow River Flood Field, due to the loss of dynamic strength of roadbed soils under the couple effects of temperature, salt, and vehicle traffic load. This is strongly linked to the dynamic characteristics of silt in this region. To analyze these couple effects on the dynamic characteristics of silt, a series of tests(i.e., freeze-thaw cycling tests, vibration triaxial tests and ultrasonic wave velocity tests) were conducted and two kinds of silt(i.e., salt-free and 3%-salt silt) were designed. The results indicate that the dynamic shear strength and dynamic modulus decrease with increasing freeze-thaw cycles, while the damping ratio simultaneously increases. Furthermore, compared to salt-free silt, the decrement of dynamic shear strength and dynamic modulus of silt with 3% salt is more significant, but the damping ratio of 3%-salt silt is larger. In ultrasonic wave velocity tests, ultrasonic wave velocity of frozen soil specimens decreases as the number of freeze-thaw cycles increases. Based on the results of ultrasonic wave velocity tests, a preliminary model is proposed to evaluate damage of silt through field measurement ultrasonic data. The study could provide a theoretical basis for the treatment of silty soil highway.
基金supported by the National Natural Science Foundation of China(Nos.U1806230,U2006213),and the Fundamental Research Funds for the Central Univer-sities(No.201962011).
文摘Partial drainage often occurs during piezocone penetration testing on Yellow River Delta silt because of its intermediate physical and mechanical properties between those of sand and clay.Yet,there is no accurate understanding for the range of penetra-tion rates to trigger the partial drainage of silt soils.In order to fully investigate cone penetration rate effects under partial drainage condi-tions,indoor 1 g penetration model tests and numerical simulations of cavity expansion at variable penetration rates were carried out on the Yellow River Delta silt.The boundary effect of the model tests and the variation of key parameters at the different cavity ex-pansion rates were analyzed.The 1 g penetration model test results and numerical simulations results consistently indicated that the penetration rate to trigger the partially drainage of typical silt varied at least three orders of magnitude.The numerical simulations also provide the reference values for the penetration resistance corresponding to zero dilation and zero viscosity at any given normalized penetration rate for silt in Yellow River Delta.These geotechnical properties can be used for the design of offshore platforms in Yel-low River Delta,and the understanding of cone penetration rate effects under the partially drained conditions would provide some technical support for geohazard evaluation of offshore platforms.
基金The authors would like to thank the National Natural Science Foundation of China(Nos.U2006213,42277139,42207172)the China Postdoctoral Science Foundation(No.2022M712989)the Natural Science Foundation of Shandong Province(No.ZR2022QD103).
文摘The thermal conductivity of marine sediments is an important thermophysical parameter in the study of seafloor heat flow and marine engineering construction.Understanding the effect of thermal conductivity of marine sediments in the environment has a major engineering value and theoretical significance.In this work,a modified test method was used to measure the thermal conductivity of silt in the Yellow River Delta under different void ratios,moisture contents,temperatures,and salinities.Results showed that the thermal conductivity of silt in the Yellow River Delta decreased with the increase in the void ratio and increased with the water content.Compared with sand and clay,silt in the Yellow River Delta was the least affected by the void ratio and moisture content.Under low temperatures,the heat transfer of soil was controlled by the average velocity of the phonons;therefore,the thermal conductivity of silt in the Yellow River Estuary increased with temperature.The thermal conductivity of pore water decreased with increasing salinity.Moreover,certain salinity levels resulted in a phenomenon known as the‘compressing twin electrical layer’,which led to an increase in the contact area between soil particles.With the increase in salinity,the thermal conductivity of silt in the Yellow River Delta experiences an initial decline and a subsequent increase.The proposed thermal conductivity test method is more accurate than the existing technique,and the findings provide a basis for further study on the thermal characteristics of submarine sediments.