The Yangtze River economic belt(YREB),China is important to the Chinese economy and for supporting sustainable development.Clarifying the relationship between water quality indices and socioeconomic indicators could h...The Yangtze River economic belt(YREB),China is important to the Chinese economy and for supporting sustainable development.Clarifying the relationship between water quality indices and socioeconomic indicators could help improve aquatic environment management in the YREB and our understanding of the causes and effects of water quality variations in other large river basins.In this study,river water quality,factors affecting water quality,and management strategies,and correlations between water quality indices and socioeconomic indicators in the YREB during the 13th Five-Year Plan period(2016-2020)were assessed.The single-factor evaluation method,constant price for GDP,and correlation analyses were adopted.The results showed that:1)water quality in the YREB improved during the 13th Five-Year Plan period.The number of aquatic environment sections meeting GradeⅠ-Ⅲwater quality standards increased by 13.1%and the number below Grade V decreased by 2.9%.2)The values of 12 indicators in the YREB exceeded relevant standards.The indicators with highest concentreation were the total phosphorus,chemical oxygen demand,ammonia nitrogen,and permanganate index,which were relatively high in downstream regions in Anhui Province,Jiangsu Province,and Shanghai Municipality.3)Ammonia nitrogen,chemical oxygen demand,and total phosphorus emissions per unit area and water extraction per unit area are relatively high in the three downstream regions mentioned above.4)Increased domestic sewage discharges have increased total wastewater discharges in the YREB.5)River water quality in the YREB strongly correlated with population,economic,and water resource indices and less strongly correlated with government investment,agriculture,meteorology,energy,and forestry indices.This confirmed the need to decrease wastewater discharges and non-point-source pollutant emissions.The aquatic environment could be improved by taking reasonable measures to control population growth,adjusting the industrial structure to accelerate industrial transformation and increase the proportion of tertiary industries,and investing in technological innovations to protect the environment.展开更多
The Yangtze River Economic Belt is the main rice producing area in China.The rice industry chain is the agricultural pillar industry chain of this economic belt and it is the key to ensuring national food security and...The Yangtze River Economic Belt is the main rice producing area in China.The rice industry chain is the agricultural pillar industry chain of this economic belt and it is the key to ensuring national food security and promoting comprehensive rural revitalization.This study discusses the entire rice industry chain in the Yangtze River Economic Belt from the national rice production functional zones,agricultural product quality and safety,national famous and excellent new agricultural products,national specialty agricultural products,"China s good grain and oil"products,and national advantageous characteristic industrial clusters.Then,it discusses the geographical indications of rice and its products in this economic belt from geographical indication products,geographical indication trademarks,agricultural geographical indications,geographical indication standards,geographical indication special indications,national geographical indication product protection demonstration zones,and Chinese geographical indication products protected by the European Union.In addition,it analyzes the five main problems between geographical indications and public brands,such as the limited use of geographical indication specific signs and the imperfect intellectual property protection system for geographical indications.Finally,it proposes eight strategies,including promoting the high-quality development of the entire rice industry chain,creating a geographical indication regional public brand for rice and its products,and implementing geographical indication protection projects.展开更多
Changes in river cross-section morphology have decisive influences on the flood discharge and sand transport capacity of rivers;thus,these changes strongly reflect the vitality of a river.In this paper,based on the ri...Changes in river cross-section morphology have decisive influences on the flood discharge and sand transport capacity of rivers;thus,these changes strongly reflect the vitality of a river.In this paper,based on the river cross-section and water and sediment data of two different periods(1974−1987 and 2007−2021),the trend analysis,change-point analysis and sediment rating curve method were used to analyze the change process of river cross-section morphology and its response to streamflow and sediment changes in the main river stream of the Yellow River at the Longmen hydrological station.From 1974 to 1987(except in 1977),the riverbed experi-enced siltation,and the riverbed elevation rose.Conversely,from 2007 to 2021,the riverbed experienced scouring,and the riverbed el-evation gradually decreased.The cross-section shape changed from rectangular to U-shaped(deeper on the right side)at the Longmen cross-section.The changes in streamflow and sediment processes significantly impacted the evolution of river cross-section.Stream-flow(P<0.05),sediment discharge(P<0.01),and the sediment load coefficients(P<0.01)decreased significantly.The relationship between the water depth and sediment load coefficients followed a power function.The decreasing trend in sediment discharge was sig-nificantly stronger than that in streamflow.Suspended sediment particles tended to become finer.The sediment rating curve indicates that the sediment supply from upstream decreased while the erosive power in the river channel increased,leading to a gradual decline in riverbed elevation at the Longmen cross-section from 2007 to 2021.These findings help us better understand the impacts of ecological restoration on changes in river streamflow and sediment during river evolution.展开更多
The productivity of vegetation is influenced by both climate change and human activities.Understanding the specific contributions of these influencing factors is crucial for ecological conservation and regional sustai...The productivity of vegetation is influenced by both climate change and human activities.Understanding the specific contributions of these influencing factors is crucial for ecological conservation and regional sustainability.This study utilized a combination of multi-source data to examine the spatiotemporal patterns of Net Primary Productivity(NPP)in the Yellow River Basin(YRB),China from 1982 to 2020.Additionally,a scenario-based approach was employed to compare Potential NPP(PNPP)with Actual NPP(ANPP)to determine the relative roles of climatic and human factors in NPP changes.The PNPP was estimated using the Lund-Potsdam-Jena General Ecosystem Simulator(LPJ-GUESS)model,while ANPP was evaluated by the Carnegie-Ames-Stanford Approach(CASA)model using different NDVI data sources.Both model simulations revealed that significant greening occurring in the YRB,with a gradual decrease observed from southeast to northwest.According to the LPJ_GUESS model simulations,areas experiencing an increasing trend in NPP accounted for 86.82% of the YRB.When using GIMMS and MODIS NDVI data with CASA model simulations,areas showing an increasing trend in NPP accounted for 71.42% and 97.02%,respectively.Furthermore,both climatic conditions and human factors had positive effects on vegetation restoration;approximated 41.15% of restored vegetation areas were influenced by both climate variation and human activities,while around 31.93% were solely affected by climate variation.However,it was found that human activities served as the principal driving force of vegetation degradation within the YRB,impacting 26.35% of degraded areas solely due to human activities.Therefore,effective management strategies encompassing both human activities and climate change adaptation are imperative for facilitating vegetation restoration within this region.These findings will valuable for enhancing our understanding in NPP changes and its underlying factors,thereby contributing to improved ecological management and the pursuit of regional carbon neutrality in China.展开更多
Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil aroun...Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.展开更多
Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon...Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.展开更多
The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holdin...The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holding capacity and needs to be modified urgently.Therefore,two types of biochar,namely rice husk biochar(RHB)and coconut shell biochar(CSB),were utilized in this study to modify the YRS and compared with rice husk ash(RHA).Some engineering properties of the modified YRS(MYRS),including pore structure,water retention,permeability,and vegetation performance,were investigated by considering the effects of biochar types and dosages.Results showed that the addition of the three materials decreased the bulk density of the YRS and increased the volume of extremely micro pore(d<0.3µm),as well as the effective porosity and capillary porosity,thus contributed to an increase in the water-holding capacity of the sediment.Among the three conditioners,RHB is optimal choice for improving the water-holding capacity of YRS.Furthermore,the effect becomes more pronounced with increasing application rates.With the addition of the three materials,the permeability coefficients of MYRS gradually decreased,while the water retention rate during evaporation significantly increased.The pot experiment showed that the three conditioners all had significant promoting effect on the growth of oats.In particular,compared to plain soil,the total biomass of oats grown for 21 days increased by 17.46%,32.14%,and 49.60%after adding 2%,4%,and 8%RHB,respectively.This study introduces a new approach for using YRS as planting soil in arid and semi-arid areas of China to facilitate mine ecological restoration.展开更多
Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological prote...Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological protection and sustainable development.In this study,the trend of erosion-deposition evolution in the Qingshuigou was investigated based on 38 coastline phases extracted from Landsat series images of the YRD at one-year intervals from 1984 to 2021.The periodicity of the scouring and deposition evolution was also analyzed using wavelet analysis.Results showed that the total area of the Qingshuigou was affected by deposition and erosion and that the fluctuation first increased and then decreased.The total area reached a maximum in 1993.The depositional area first increased and then decreased,whereas the overall erosion area decreased.Deposition and erosion areas showed periodic changes to some extent;however,the periodic signal intensity decreased.Furthermore,factors including channel morphological evolution and variations in water and sediment discharge affect the spatiotemporal dynamics of erosion and deposition processes.The application of nonconsistency tests finally revealed that deposition area and flushing magnitude exhibited non-stationarities,which are potentially attributed to impacts from climatic change drivers.展开更多
Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence...Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence,spatial distribution,potential sources,and ecological risks of PFASs.Twenty-three out of 26 targeted PFASs were detected in surface sediment samples from the YRDW,with totalΣ23PFASs concentrations ranging from 0.23 to 16.30 ng g^(-1) dw and a median value of 2.27 ng g^(-1) dw.Perfluorooctanoic acid(PFOA),perfluorobutanoic acid(PFBA)and perfluorooctanesulfonic acid(PFOS)were the main contaminants.The detection frequency and concentration of perfluoroalkyl carboxylic acids(PFCAs)were higher than those of perfluoroal-kanesulfonic acids(PFSAs),while those of long-chain PFASs were higher than those of short-chain PFASs.The emerging PFASs substitutes were dominated by 6:2 chlorinated polyfluoroalkyl ether sulfonic acid(6:2 Cl-PFESA).The distribution of PFASs is significantly influenced by the total organic carbon content in the sediments.The concentration of PFASs seems to be related to human activities,with high concentration levels of PFASs near locations such as beaches and villages.By using a positive matrix factorization model,the potential sources of PFASs in the region were identified as metal plating mist inhibitor and fluoropolymer manufacturing sources,metal plating industry and firefighting foam and textile treatment sources,and food packaging material sources.The risk assessment indicated that PFASs in YRDW sediments do not pose a significant ecological risk to benthic organisms in the region overall,but PFOA and PFOS exert a low to moderate risk at individual stations.展开更多
Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alte...Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alteration and the Range of Variability Approach(IHA-RVA)method,as well as the ecological indicator method,were employed to quantitatively assess the degree of hydrologic change and ecological response processes in the Yellow River Basin from 1960 to 2020.Using Budyko's water heat coupling balance theory,the relative contributions of various driving factors(such as precipitation,potential evapotranspiration,and underlying surface)to runoff changes in the Yellow River Basin were quantitatively evaluated.The results show that the annual average runoff and precipitation in the Yellow River Basin had a downwards trend,whereas the potential evapotranspiration exhibited an upwards trend from 1960 to 2020.In approximately 1985,it was reported that the hydrological regime of the main stream underwent an abrupt change.The degree of hydrological change was observed to gradually increase from upstream to downstream,with a range of 34.00%-54.00%,all of which are moderate changes.However,significant differences have been noted among different ecological indicators,with a fluctuation index of 90.00%at the outlet of downstream hydrological stations,reaching a high level of change.After the mutation,the biodiversity index of flow in the middle and lower reaches of the Yellow River was generally lower than that in the base period.The research results also indicate that the driving factor for runoff changes in the upper reach of the Yellow River Basin is mainly precipitation,with a contribution rate of 39.31%-54.70%.Moreover,the driving factor for runoff changes in the middle and lower reaches is mainly human activities,having a contribution rate of 63.70%-84.37%.These results can serve as a basis to strengthen the protection and restoration efforts in the Yellow River Basin and further promote the rational development and use of water resources in the Yellow River.展开更多
Sloping farmland(SpF)is not only an important space for food production and supply in China’s hilly areas,but also a major source of soil erosion.Thus,it is important to achieve a healthy balance between regional foo...Sloping farmland(SpF)is not only an important space for food production and supply in China’s hilly areas,but also a major source of soil erosion.Thus,it is important to achieve a healthy balance between regional food security and environmental protection.Yangtze River Economic Belt(YREB),an important grain production base where SpF concentrated in China,is also faced with serious soil erosion.However,research at the macro scale on the spatiotemporal change of SpF and its driving forces in YREB is still lacking.To bridge the gap,we first analyzed the long-term evolution characteristics of SpF in 1069 counties in the YREB and then explored the driving mechanism of SpF changes during 1980-2020.Results showed that the SpF in the YREB continuously decreased during the study period,with a total area decreasing by 26,300 km2.SpF was primarily concentrated in the upper reaches of the YREB while SpF use dynamic degree varied significantly with the most active change in the lower reaches,reaching to a maximum of 0.324%.The spatial gravity of SpF distribution relocated 20.15 km towards the southwest.As for the driving factors,the socioeconomic factors contributed greater to SpF changes in the whole YREB and its subregions.The intensity of human activities is the most crucial,with factor contribution rate constantly above 0.76.The interactive detection revealed that the prevailing interaction format was primarily bi-enhanced,supplemented with nonlinear-enhanced,which amplified the role of different factors after interacting with them.The pair-wise interaction involving socioeconomic factors had a more potential effect on SpF changes compared to those between physical geography and locational factors.The influence of the intensity of human activities on SpF changes is greatly enhanced after interacting with any factor.It dominated SpF changes in the YREB and its interaction with GDP played an important role at all times.These findings can enlighten differential management strategies of SpF use and ecological conservation in the YREB.展开更多
With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important ro...With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important role in maintaining the stability of shorebird population.Satellite tracking technique can obtain high-precision location information of individuals day and night,providing a good technical support for the study of quantitative relationship between waterfowls and their habitats.In this study,satellite tracking method,Remote Sensing(RS)and Geographic Information System(GIS)technology were used to analyze the activity pattern and habitat utilization characteristics of Pied Avocet during breeding period in an artificial wetland complex in the Yellow River Delta(YRD),China.The results showed that the breeding Pied Avocets had a small range of activity,with a total core and main home range of 33.10 km^(2) and 216.30 km^(2),respectively.This species tended to forage in the pond and salt pan during the day and night,respectively,with an unfixed staying time in the breeding ground.The distance between breeding ground and feeding ground was less than 6 km.It is emphasized that in addition to improving the conditions of the remaining natural habitats,effective managing artificial habitats is a priority for shorebird conservation.This research could provide reference for the management of artificial wetlands in coastal zones and supply technique support for the protection of shorebirds and their habitats,and alleviate human-bird conflicts and sustainable development of coastal zones.展开更多
Bioturbation is one of the important processes that affect the structure and function of sedimentary environments.The particle mixing and element migration processes caused by bioturbation can interfere with the circu...Bioturbation is one of the important processes that affect the structure and function of sedimentary environments.The particle mixing and element migration processes caused by bioturbation can interfere with the circulation of matter and the explanation of sedimentary records.Therefore,the quantitative characterization of bioturbation structures in the sedimentary sequence is of great significance in the field of sedimentology.Estuaries,where fresh and saltwater mix,exhibit high ecological heterogeneity and biodiversity,making them ideal places to explore bioturbation.This paper targets the subaqueous Yellow River Delta to quantitatively characterize bioturbation structures and their spatial distribution patterns using computed tomography(CT)scanning and three-dimensional reconstruction technology.By combining sediment characteristics and sedimentary environment analysis,the main factors affecting bioturbation structures are elucidated.The results show that bioturbation structures in the subaqueous Yellow River Delta can be divided into four types based on their morphology:uniaxial type,biaxial type,triaxial type,and multiaxial type.Skolithos,Palaeophycus in the uniaxial type,and Thalassinoides in the multiaxial type are the most developed structures.Different types of bioturbation may be constructed by trace-making organisms belonging to the same category or functional group.The intensity of bioturbation in this area ranges from 0 to 4%,with a decreasing trend from nearshore to offshore.There is a downward decreasing trend in the intensity of bioturbation overall in the sedimentary cores,with three vertical distribution patterns:exponential decay pattern,fluctuating decay pattern,and impulsive pattern.The impulsive pattern of bioturbation in a core may indicate the abrupt change in sedimentary environment induced by the Yellow River channel shift in 1996.These results suggest that factors affecting the development of bioturbation include grain size,porosity,consolidation,organic matter content of sediments,and sedimentation rate that is mainly influenced by local hydrodynamic conditions.The environment with clayey silt(average grain size 10μm)and moderate sedimentation rate(around 0.5 cm yr^(-1))is the most suitable area for the development of bioturbation in the Yellow River subaqueous delta.展开更多
In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are susta...In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.展开更多
The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the regio...The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.展开更多
Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its i...Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its influencing factors remains further study.In this study,for better investigating the pattern and heterogeneity of virtual water trade inside and outside provincial regions along the Yellow River Basin in 2015 using the input-output model(MRIO),we proposed two new concepts,i.e.,virtual water surplus and virtual water deficit,and then used the Logarithmic Mean Divisia Index(LMDI)model to identify the inherent mechanism of the imbalance of virtual water trade between provincial regions along the Yellow River Basin and the other four regions in China.The results show that:1)in provincial regions along the Yellow River Basin,the less developed the economy was,the larger the contribution of the agricultural sector in virtual water trade,while the smaller the contribution of the industrial sector.2)Due to the large output of agricultural products,the upstream and midstream provincial regions of the Yellow River Basin had a virtual water surplus,with a net outflow of virtual water of 2.7×10^(8) m^(3) and 0.9×10^(8) m^(3),respectively.3)provincial regions along the Yellow River Basin were in a virtual water deficit with the rest of China,and the decisive factor was the active degree of trade with the outside.This study would be beneficial to illuminate the trade-related water use issues in provincial regions along the Yellow River Basin,which has farreaching practical signific-ance for alleviating water scarcity.展开更多
Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this s...Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this study,we examined the re-sponses of soil C,N,and P contents and their stoichiometric ratios to vegetation restoration age,focusing on below-ground processes and their relationships to aboveground vegetation community characteristics.We conducted an analysis of temporal gradients based on the'space for time'method to synthesize the effects of restoration age on soil C:N:P stoichiometry in the Yellow River Delta wetland of China.The findings suggest that the combined effects of restoration age and soil depth create complex patterns of shifting soil C:N:P stoichiometry.Specifically,restoration age significantly increased all topsoil C:N:P stoichiometries,except for soil total phosphorus(TP)and the C:N ratio,and slightly affected subsoil C:N:P stoichiometry.The effects of restoration age on the soil C:N ratio was well constrained owing to the coupled relationship between soil organic carbon(SOC)and total nitrogen(TN)contents,while soil TP con-tent was closely related to changes in plant species diversity.Importantly,we found that the topsoil C:N:P stoichiometry was signific-antly affected by plant species diversity,whereas the subsoil C:N:P stoichiometry was more easily regulated by pH and electric con-ductivity(EC).Overall,this study shows that vegetation restoration age elevated SOC and N contents and alleviated N limitation,which is useful for further assessing soil C:N:P stoichiometry in coastal restoration wetlands.展开更多
City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordi...City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordinate the regional carbon emission management,realize sustainable development,and assist China in achieving the carbon peaking and carbon neutrality goals.This paper applies the improved gravity model and social network analysis(SNA)to the study of spatial correlation of carbon emissions in city clusters and analyzes the structural characteristics of the spatial correlation network of carbon emissions in the Yangtze River Delta(YRD)city cluster in China and its influencing factors.The results demonstrate that:1)the spatial association of carbon emissions in the YRD city cluster exhibits a typical and complex multi-threaded network structure.The network association number and density show an upward trend,indicating closer spatial association between cities,but their values remain generally low.Meanwhile,the network hierarchy and network efficiency show a downward trend but remain high.2)The spatial association network of carbon emissions in the YRD city cluster shows an obvious‘core-edge’distribution pattern.The network is centered around Shanghai,Suzhou and Wuxi,all of which play the role of‘bridges’,while cities such as Zhoushan,Ma'anshan,Tongling and other cities characterized by the remote location,single transportation mode or lower economic level are positioned at the edge of the network.3)Geographic proximity,varying levels of economic development,different industrial structures,degrees of urbanization,levels of technological innovation,energy intensities and environmental regulation are important influencing factors on the spatial association of within the YRD city cluster.Finally,policy implications are provided from four aspects:government macro-control and market mechanism guidance,structural characteristics of the‘core-edge’network,reconfiguration and optimization of the spatial layout of the YRD city cluster,and the application of advanced technologies.展开更多
Establishing the Greater Food Approach and promoting the Yangtze River Economic Belt s national major regional development strategy can better support and serve the agricultural power and Chinese-style modernization.T...Establishing the Greater Food Approach and promoting the Yangtze River Economic Belt s national major regional development strategy can better support and serve the agricultural power and Chinese-style modernization.This paper introduces the characteristics of fruit industry in 16 autonomous prefectures and 47 autonomous counties under the jurisdiction of the Yangtze River Economic Belt.It studies the intellectual property resources of brand marks from the aspects of geographical indications,collective trademarks,certification trademarks,well-known trademarks in China and national design patents,and analyzes the main problems of brand and high-quality development of fruit industry in these ethnic autonomous areas.Finally,it puts forward some strategies,such as improving the protection of intellectual property rights of geographical indications,using intellectual property rights of brand signs,building modern seed industry upgrading project,drawing lessons from the experience of thousand villages demonstration project,ensuring that large-scale poverty does not occur,and building a diversified food supply system.展开更多
The spatial and temporal variation of green economic efficiency and its driving factors are of great significance for the construction of high-efficiency and low-consumption green development model and sustainable soc...The spatial and temporal variation of green economic efficiency and its driving factors are of great significance for the construction of high-efficiency and low-consumption green development model and sustainable socio-economic development.The research focused on the Yangtze River Economic Belt(YREB)and employed the miniumum distance to strong efficient frontier DEA(MinDs)model to measure the green economic efficiency of the municipalities in the region between 2008 and 2020.Then,the spatial autocorrelation model was used to analyze the evolution characteristics of its spatial pattern.Finally,Geodetector was applied to reveal the drivers and their interactions on green economic efficiency.It is found that:1)the overall green economic efficiency of the YREB from 2008 to 2020 shows a W-shaped fluctuating upward trend,green economic efficiency is greater in the downstream and smallest in the upstream;2)the spatial distribution of green economic efficiency shows clustering characteristics,with multi-core clustering based on‘city clusters-central cities'becoming more obvious over time;the High-High agglomeration type is mainly clustered in Jiangsu and Zheji-ang,while the Low-Low agglomeration type is clustered in the western Sichuan Plateau area and southwestern Yunnan;3)from input-output factors,whether it is the YREB as a whole or the upper,middle and lower reaches regions,the economic development level,labor input,and capital investment are the leading factors in the spatial-temporal evolution of green economic efficiency,with the com-prehensive influence of economic development level and pollution index being the most important interactive driving factor;4)from so-cio-economic factors,information technology drivers such as government intervention,transportation accessibility,information infra-structure,and Internet penetration are always high impact influencers and dominant interaction factors for green economic efficiency in the YREB and the three major regions in the upper,middle and lower reaches.Accordingly,the article puts forward relevant policy re-commendations in terms of formulating differentiated green transformation strategies,strengthening network leadership and informa-tion technology construction and coordinating multi-factor integrated development,which could provide useful reference for promoting synergistic green economic efficiency in the YREB.展开更多
基金National Key Research and Development Program of China(No.2022YFC3204404,2023YFF1303705)National Natural Science Foundation of China(No.U2243206)。
文摘The Yangtze River economic belt(YREB),China is important to the Chinese economy and for supporting sustainable development.Clarifying the relationship between water quality indices and socioeconomic indicators could help improve aquatic environment management in the YREB and our understanding of the causes and effects of water quality variations in other large river basins.In this study,river water quality,factors affecting water quality,and management strategies,and correlations between water quality indices and socioeconomic indicators in the YREB during the 13th Five-Year Plan period(2016-2020)were assessed.The single-factor evaluation method,constant price for GDP,and correlation analyses were adopted.The results showed that:1)water quality in the YREB improved during the 13th Five-Year Plan period.The number of aquatic environment sections meeting GradeⅠ-Ⅲwater quality standards increased by 13.1%and the number below Grade V decreased by 2.9%.2)The values of 12 indicators in the YREB exceeded relevant standards.The indicators with highest concentreation were the total phosphorus,chemical oxygen demand,ammonia nitrogen,and permanganate index,which were relatively high in downstream regions in Anhui Province,Jiangsu Province,and Shanghai Municipality.3)Ammonia nitrogen,chemical oxygen demand,and total phosphorus emissions per unit area and water extraction per unit area are relatively high in the three downstream regions mentioned above.4)Increased domestic sewage discharges have increased total wastewater discharges in the YREB.5)River water quality in the YREB strongly correlated with population,economic,and water resource indices and less strongly correlated with government investment,agriculture,meteorology,energy,and forestry indices.This confirmed the need to decrease wastewater discharges and non-point-source pollutant emissions.The aquatic environment could be improved by taking reasonable measures to control population growth,adjusting the industrial structure to accelerate industrial transformation and increase the proportion of tertiary industries,and investing in technological innovations to protect the environment.
基金Supported by Social Science Foundation of Hubei Province (HBSKJJ20243227),Doctoral Initiation Project of Hubei University of Science and Technology (BK201819).
文摘The Yangtze River Economic Belt is the main rice producing area in China.The rice industry chain is the agricultural pillar industry chain of this economic belt and it is the key to ensuring national food security and promoting comprehensive rural revitalization.This study discusses the entire rice industry chain in the Yangtze River Economic Belt from the national rice production functional zones,agricultural product quality and safety,national famous and excellent new agricultural products,national specialty agricultural products,"China s good grain and oil"products,and national advantageous characteristic industrial clusters.Then,it discusses the geographical indications of rice and its products in this economic belt from geographical indication products,geographical indication trademarks,agricultural geographical indications,geographical indication standards,geographical indication special indications,national geographical indication product protection demonstration zones,and Chinese geographical indication products protected by the European Union.In addition,it analyzes the five main problems between geographical indications and public brands,such as the limited use of geographical indication specific signs and the imperfect intellectual property protection system for geographical indications.Finally,it proposes eight strategies,including promoting the high-quality development of the entire rice industry chain,creating a geographical indication regional public brand for rice and its products,and implementing geographical indication protection projects.
基金Under the auspices of the National Natural Science Foundation of China(No.42277354,U2243211)Fundamental Research Funds for the Hebei University of Water Resources and Electric Engineering(No.SYKY2113)Science Research Project of Hebei Education Department(No.QN2025293)。
文摘Changes in river cross-section morphology have decisive influences on the flood discharge and sand transport capacity of rivers;thus,these changes strongly reflect the vitality of a river.In this paper,based on the river cross-section and water and sediment data of two different periods(1974−1987 and 2007−2021),the trend analysis,change-point analysis and sediment rating curve method were used to analyze the change process of river cross-section morphology and its response to streamflow and sediment changes in the main river stream of the Yellow River at the Longmen hydrological station.From 1974 to 1987(except in 1977),the riverbed experi-enced siltation,and the riverbed elevation rose.Conversely,from 2007 to 2021,the riverbed experienced scouring,and the riverbed el-evation gradually decreased.The cross-section shape changed from rectangular to U-shaped(deeper on the right side)at the Longmen cross-section.The changes in streamflow and sediment processes significantly impacted the evolution of river cross-section.Stream-flow(P<0.05),sediment discharge(P<0.01),and the sediment load coefficients(P<0.01)decreased significantly.The relationship between the water depth and sediment load coefficients followed a power function.The decreasing trend in sediment discharge was sig-nificantly stronger than that in streamflow.Suspended sediment particles tended to become finer.The sediment rating curve indicates that the sediment supply from upstream decreased while the erosive power in the river channel increased,leading to a gradual decline in riverbed elevation at the Longmen cross-section from 2007 to 2021.These findings help us better understand the impacts of ecological restoration on changes in river streamflow and sediment during river evolution.
基金Under the auspices of National Natural Science Foundation of China(No.41991231,U21A2011)。
文摘The productivity of vegetation is influenced by both climate change and human activities.Understanding the specific contributions of these influencing factors is crucial for ecological conservation and regional sustainability.This study utilized a combination of multi-source data to examine the spatiotemporal patterns of Net Primary Productivity(NPP)in the Yellow River Basin(YRB),China from 1982 to 2020.Additionally,a scenario-based approach was employed to compare Potential NPP(PNPP)with Actual NPP(ANPP)to determine the relative roles of climatic and human factors in NPP changes.The PNPP was estimated using the Lund-Potsdam-Jena General Ecosystem Simulator(LPJ-GUESS)model,while ANPP was evaluated by the Carnegie-Ames-Stanford Approach(CASA)model using different NDVI data sources.Both model simulations revealed that significant greening occurring in the YRB,with a gradual decrease observed from southeast to northwest.According to the LPJ_GUESS model simulations,areas experiencing an increasing trend in NPP accounted for 86.82% of the YRB.When using GIMMS and MODIS NDVI data with CASA model simulations,areas showing an increasing trend in NPP accounted for 71.42% and 97.02%,respectively.Furthermore,both climatic conditions and human factors had positive effects on vegetation restoration;approximated 41.15% of restored vegetation areas were influenced by both climate variation and human activities,while around 31.93% were solely affected by climate variation.However,it was found that human activities served as the principal driving force of vegetation degradation within the YRB,impacting 26.35% of degraded areas solely due to human activities.Therefore,effective management strategies encompassing both human activities and climate change adaptation are imperative for facilitating vegetation restoration within this region.These findings will valuable for enhancing our understanding in NPP changes and its underlying factors,thereby contributing to improved ecological management and the pursuit of regional carbon neutrality in China.
基金China Postdoctoral Science Foundation,Grant/Award Number:2023M731999National Natural Science Foundation of China,Grant/Award Number:52301326。
文摘Due to their high reliability and cost-efficiency,submarine pipelines are widely used in offshore oil and gas resource engineering.Due to the interaction of waves,currents,seabed,and pipeline structures,the soil around submarine pipelines is prone to local scour,severely affecting their operational safety.With the Yellow River Delta as the research area and based on the renormalized group(RNG)k-εturbulence model and Stokes fifth-order wave theory,this study solves the Navier-Stokes(N-S)equation using the finite difference method.The volume of fluid(VOF)method is used to describe the fluid-free surface,and a threedimensional numerical model of currents and waves-submarine pipeline-silty sandy seabed is established.The rationality of the numerical model is verified using a self-built waveflow flume.On this basis,in this study,the local scour development and characteristics of submarine pipelines in the Yellow River Delta silty sandy seabed in the prototype environment are explored and the influence of the presence of pipelines on hydrodynamic features such as surrounding flow field,shear stress,and turbulence intensity is analyzed.The results indicate that(1)local scour around submarine pipelines can be divided into three stages:rapid scour,slow scour,and stable scour.The maximum scour depth occurs directly below the pipeline,and the shape of the scour pits is asymmetric.(2)As the water depth decreases and the pipeline suspension height increases,the scour becomes more intense.(3)When currents go through a pipeline,a clear stagnation point is formed in front of the pipeline,and the flow velocity is positively correlated with the depth of scour.This study can provide a valuable reference for the protection of submarine pipelines in this area.
文摘Based on the supply-side perspective,the improved STIRPAT model is applied to reveal the mechanisms of supply-side factors such as human,capital,technology,industrial synergy,institutions and economic growth on carbon emissions in the Yangtze River Delta(YRD)through path analysis,and to forecast carbon emissions in the YRD from the baseline scenario,factor regulation scenario and integrated scenario to reach the peak.The results show that:(1)Jiangsu's high carbon emission pattern is the main reason for the YRD hindering the synergistic regulation of carbon emissions.(2)Human factors,institutional factors and economic growth factors can all contribute to carbon emissions in the YRD region,while technological and industrial factors can generally suppress carbon emissions in the YRD region.(3)Under the capital regulation scenario,the YRD region has the highest level of carbon emission synergy,with Jiangsu reaching its peak five years earlier.Under the balanced regulation scenario,the YRD region as a whole,Jiangsu,Zhejiang and Anhui reach the peak as scheduled.
基金supported by the Major Science And Technology Program of Inner Mongolia(Grant No.2021ZD0007)National Natural Science Foundation of China(Grant Nos.52209134 and 52322810)+1 种基金Natural Science Foundation of Hubei Province for Distinguished Young Scholars(No.2023AFA080)Youth Science Foundation of Jiangsu Province of China(Grant No.BK20220230).
文摘The Yellow River sediment(YRS)is an important potential soil resource for the mine land reclamation and ecological restoration in the arid regions of northern China.However,it has the shortcomings of poor water-holding capacity and needs to be modified urgently.Therefore,two types of biochar,namely rice husk biochar(RHB)and coconut shell biochar(CSB),were utilized in this study to modify the YRS and compared with rice husk ash(RHA).Some engineering properties of the modified YRS(MYRS),including pore structure,water retention,permeability,and vegetation performance,were investigated by considering the effects of biochar types and dosages.Results showed that the addition of the three materials decreased the bulk density of the YRS and increased the volume of extremely micro pore(d<0.3µm),as well as the effective porosity and capillary porosity,thus contributed to an increase in the water-holding capacity of the sediment.Among the three conditioners,RHB is optimal choice for improving the water-holding capacity of YRS.Furthermore,the effect becomes more pronounced with increasing application rates.With the addition of the three materials,the permeability coefficients of MYRS gradually decreased,while the water retention rate during evaporation significantly increased.The pot experiment showed that the three conditioners all had significant promoting effect on the growth of oats.In particular,compared to plain soil,the total biomass of oats grown for 21 days increased by 17.46%,32.14%,and 49.60%after adding 2%,4%,and 8%RHB,respectively.This study introduces a new approach for using YRS as planting soil in arid and semi-arid areas of China to facilitate mine ecological restoration.
基金supported by the National Key Research and Development Program of China(No.2022YFC3204301).
文摘Owing to climate change and human activity,the Qingshuigou of the Yellow River Delta(YRD)has undergone dynamic changes in erosion and deposition.Therefore,studying these changes is important to ensure ecological protection and sustainable development.In this study,the trend of erosion-deposition evolution in the Qingshuigou was investigated based on 38 coastline phases extracted from Landsat series images of the YRD at one-year intervals from 1984 to 2021.The periodicity of the scouring and deposition evolution was also analyzed using wavelet analysis.Results showed that the total area of the Qingshuigou was affected by deposition and erosion and that the fluctuation first increased and then decreased.The total area reached a maximum in 1993.The depositional area first increased and then decreased,whereas the overall erosion area decreased.Deposition and erosion areas showed periodic changes to some extent;however,the periodic signal intensity decreased.Furthermore,factors including channel morphological evolution and variations in water and sediment discharge affect the spatiotemporal dynamics of erosion and deposition processes.The application of nonconsistency tests finally revealed that deposition area and flushing magnitude exhibited non-stationarities,which are potentially attributed to impacts from climatic change drivers.
基金financially supported by the National Natural Science Foundation of China(NSFC)(No.42377217)the Cooperation Fund between Dongying City and Universities(No.SXHZ-2023-02-6).
文摘Per-and polyfluoroalkyl substances(PFASs)are emerging persistent organic pollutants(POPs).In this study,47 surface sediment samples were collected from the Yellow River Delta wetland(YRDW)to investigate the occurrence,spatial distribution,potential sources,and ecological risks of PFASs.Twenty-three out of 26 targeted PFASs were detected in surface sediment samples from the YRDW,with totalΣ23PFASs concentrations ranging from 0.23 to 16.30 ng g^(-1) dw and a median value of 2.27 ng g^(-1) dw.Perfluorooctanoic acid(PFOA),perfluorobutanoic acid(PFBA)and perfluorooctanesulfonic acid(PFOS)were the main contaminants.The detection frequency and concentration of perfluoroalkyl carboxylic acids(PFCAs)were higher than those of perfluoroal-kanesulfonic acids(PFSAs),while those of long-chain PFASs were higher than those of short-chain PFASs.The emerging PFASs substitutes were dominated by 6:2 chlorinated polyfluoroalkyl ether sulfonic acid(6:2 Cl-PFESA).The distribution of PFASs is significantly influenced by the total organic carbon content in the sediments.The concentration of PFASs seems to be related to human activities,with high concentration levels of PFASs near locations such as beaches and villages.By using a positive matrix factorization model,the potential sources of PFASs in the region were identified as metal plating mist inhibitor and fluoropolymer manufacturing sources,metal plating industry and firefighting foam and textile treatment sources,and food packaging material sources.The risk assessment indicated that PFASs in YRDW sediments do not pose a significant ecological risk to benthic organisms in the region overall,but PFOA and PFOS exert a low to moderate risk at individual stations.
基金supported by the Basic Research Project of Key Scientific Research Projects of Colleges and Universities of Henan Province,China(23ZX012).
文摘Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alteration and the Range of Variability Approach(IHA-RVA)method,as well as the ecological indicator method,were employed to quantitatively assess the degree of hydrologic change and ecological response processes in the Yellow River Basin from 1960 to 2020.Using Budyko's water heat coupling balance theory,the relative contributions of various driving factors(such as precipitation,potential evapotranspiration,and underlying surface)to runoff changes in the Yellow River Basin were quantitatively evaluated.The results show that the annual average runoff and precipitation in the Yellow River Basin had a downwards trend,whereas the potential evapotranspiration exhibited an upwards trend from 1960 to 2020.In approximately 1985,it was reported that the hydrological regime of the main stream underwent an abrupt change.The degree of hydrological change was observed to gradually increase from upstream to downstream,with a range of 34.00%-54.00%,all of which are moderate changes.However,significant differences have been noted among different ecological indicators,with a fluctuation index of 90.00%at the outlet of downstream hydrological stations,reaching a high level of change.After the mutation,the biodiversity index of flow in the middle and lower reaches of the Yellow River was generally lower than that in the base period.The research results also indicate that the driving factor for runoff changes in the upper reach of the Yellow River Basin is mainly precipitation,with a contribution rate of 39.31%-54.70%.Moreover,the driving factor for runoff changes in the middle and lower reaches is mainly human activities,having a contribution rate of 63.70%-84.37%.These results can serve as a basis to strengthen the protection and restoration efforts in the Yellow River Basin and further promote the rational development and use of water resources in the Yellow River.
基金funded by the grants from the National Natural Science Foundation of China(42230113,42101415)Ministry of Education of Humanities and Social Science Project(21YJCZH181)supported by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources(NRMSSHR2023Y02).
文摘Sloping farmland(SpF)is not only an important space for food production and supply in China’s hilly areas,but also a major source of soil erosion.Thus,it is important to achieve a healthy balance between regional food security and environmental protection.Yangtze River Economic Belt(YREB),an important grain production base where SpF concentrated in China,is also faced with serious soil erosion.However,research at the macro scale on the spatiotemporal change of SpF and its driving forces in YREB is still lacking.To bridge the gap,we first analyzed the long-term evolution characteristics of SpF in 1069 counties in the YREB and then explored the driving mechanism of SpF changes during 1980-2020.Results showed that the SpF in the YREB continuously decreased during the study period,with a total area decreasing by 26,300 km2.SpF was primarily concentrated in the upper reaches of the YREB while SpF use dynamic degree varied significantly with the most active change in the lower reaches,reaching to a maximum of 0.324%.The spatial gravity of SpF distribution relocated 20.15 km towards the southwest.As for the driving factors,the socioeconomic factors contributed greater to SpF changes in the whole YREB and its subregions.The intensity of human activities is the most crucial,with factor contribution rate constantly above 0.76.The interactive detection revealed that the prevailing interaction format was primarily bi-enhanced,supplemented with nonlinear-enhanced,which amplified the role of different factors after interacting with them.The pair-wise interaction involving socioeconomic factors had a more potential effect on SpF changes compared to those between physical geography and locational factors.The influence of the intensity of human activities on SpF changes is greatly enhanced after interacting with any factor.It dominated SpF changes in the YREB and its interaction with GDP played an important role at all times.These findings can enlighten differential management strategies of SpF use and ecological conservation in the YREB.
基金Under the auscpices of Shandong Provincial Natural Science Foundation (No.ZR2020QD090)Research Funds of Beijing VMinFull Limted (No.VMF2021RS)+1 种基金National Natural Science Foundation of China (No.42176221)Seed Project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences (No.YICE351030601)。
文摘With the loss of substantial natural wetlands in coastal zones,artificial wetlands provide alternative habitats for many shorebirds.Scientific management of artificial wetlands used by shorebirds plays an important role in maintaining the stability of shorebird population.Satellite tracking technique can obtain high-precision location information of individuals day and night,providing a good technical support for the study of quantitative relationship between waterfowls and their habitats.In this study,satellite tracking method,Remote Sensing(RS)and Geographic Information System(GIS)technology were used to analyze the activity pattern and habitat utilization characteristics of Pied Avocet during breeding period in an artificial wetland complex in the Yellow River Delta(YRD),China.The results showed that the breeding Pied Avocets had a small range of activity,with a total core and main home range of 33.10 km^(2) and 216.30 km^(2),respectively.This species tended to forage in the pond and salt pan during the day and night,respectively,with an unfixed staying time in the breeding ground.The distance between breeding ground and feeding ground was less than 6 km.It is emphasized that in addition to improving the conditions of the remaining natural habitats,effective managing artificial habitats is a priority for shorebird conservation.This research could provide reference for the management of artificial wetlands in coastal zones and supply technique support for the protection of shorebirds and their habitats,and alleviate human-bird conflicts and sustainable development of coastal zones.
基金supported by the National Natural Science Foundation of China(No.42176077)。
文摘Bioturbation is one of the important processes that affect the structure and function of sedimentary environments.The particle mixing and element migration processes caused by bioturbation can interfere with the circulation of matter and the explanation of sedimentary records.Therefore,the quantitative characterization of bioturbation structures in the sedimentary sequence is of great significance in the field of sedimentology.Estuaries,where fresh and saltwater mix,exhibit high ecological heterogeneity and biodiversity,making them ideal places to explore bioturbation.This paper targets the subaqueous Yellow River Delta to quantitatively characterize bioturbation structures and their spatial distribution patterns using computed tomography(CT)scanning and three-dimensional reconstruction technology.By combining sediment characteristics and sedimentary environment analysis,the main factors affecting bioturbation structures are elucidated.The results show that bioturbation structures in the subaqueous Yellow River Delta can be divided into four types based on their morphology:uniaxial type,biaxial type,triaxial type,and multiaxial type.Skolithos,Palaeophycus in the uniaxial type,and Thalassinoides in the multiaxial type are the most developed structures.Different types of bioturbation may be constructed by trace-making organisms belonging to the same category or functional group.The intensity of bioturbation in this area ranges from 0 to 4%,with a decreasing trend from nearshore to offshore.There is a downward decreasing trend in the intensity of bioturbation overall in the sedimentary cores,with three vertical distribution patterns:exponential decay pattern,fluctuating decay pattern,and impulsive pattern.The impulsive pattern of bioturbation in a core may indicate the abrupt change in sedimentary environment induced by the Yellow River channel shift in 1996.These results suggest that factors affecting the development of bioturbation include grain size,porosity,consolidation,organic matter content of sediments,and sedimentation rate that is mainly influenced by local hydrodynamic conditions.The environment with clayey silt(average grain size 10μm)and moderate sedimentation rate(around 0.5 cm yr^(-1))is the most suitable area for the development of bioturbation in the Yellow River subaqueous delta.
基金supported by the National Nature Science Foundations of China(32160269)the International Science and Technology Cooperation Project of Qinghai province of China(2022-HZ-817).
文摘In the restoration of degraded wetlands,fertilization can improve the vegetation-soil-microorganisms complex,thereby affecting the organic carbon content.However,it is currently unclear whether these effects are sustainable.This study employed Biolog-Eco surveys to investigate the changes in vegetation characteristics,soil physicochemical properties,and soil microbial functional diversity in degraded alpine wetlands of the source region of the Yellow River at 3 and 15 months after the application of nitrogen,phosphorus,and organic mixed fertilizer.The following results were obtained:The addition of nitrogen fertilizer and organic compost significantly affects the soil organic carbon content in degraded wetlands.Three months after fertilization,nitrogen addition increases soil organic carbon in both lightly and severely degraded wetlands,whereas after 15 months,organic compost enhanced the soil organic carbon level in severely degraded wetlands.Structural equation modeling indicates that fertilization decreases the soil pH and directly or indirectly influences the soil organic carbon levels through variations in the soil water content and the aboveground biomass of vegetation.Three months after fertilization,nitrogen fertilizer showed a direct positive effect on soil organic carbon.However,organic mixed fertilizer indirectly reduced soil organic carbon by increasing biomass and decreasing soil moisture.After 15 months,none of the fertilizers significantly affected the soil organic carbon level.In summary,it can be inferred that the addition of nitrogen fertilizer lacks sustainability in positively influencing the organic carbon content.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41461011)。
文摘The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.
基金Under the auspices of National Natural Science Foundation of China(No.42201302)‘Double First-Class’University Construction Project of Lanzhou University(No.561120213)。
文摘Virtual water trade(VWT)provides a new perspective for alleviating water crisis and has thus attracted widespread attention.However,the heterogeneity of virtual water trade inside and outside the river basin and its influencing factors remains further study.In this study,for better investigating the pattern and heterogeneity of virtual water trade inside and outside provincial regions along the Yellow River Basin in 2015 using the input-output model(MRIO),we proposed two new concepts,i.e.,virtual water surplus and virtual water deficit,and then used the Logarithmic Mean Divisia Index(LMDI)model to identify the inherent mechanism of the imbalance of virtual water trade between provincial regions along the Yellow River Basin and the other four regions in China.The results show that:1)in provincial regions along the Yellow River Basin,the less developed the economy was,the larger the contribution of the agricultural sector in virtual water trade,while the smaller the contribution of the industrial sector.2)Due to the large output of agricultural products,the upstream and midstream provincial regions of the Yellow River Basin had a virtual water surplus,with a net outflow of virtual water of 2.7×10^(8) m^(3) and 0.9×10^(8) m^(3),respectively.3)provincial regions along the Yellow River Basin were in a virtual water deficit with the rest of China,and the decisive factor was the active degree of trade with the outside.This study would be beneficial to illuminate the trade-related water use issues in provincial regions along the Yellow River Basin,which has farreaching practical signific-ance for alleviating water scarcity.
基金Under the auspices of Natural Science Foundation of China(No.U2106209,42071126)Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23050202)International Science Partnership Program of the Chinese Academy of Sciences(No.121311KYSB20190029)。
文摘Vegetation restoration can alter carbon(C),nitrogen(N),and phosphorus(P)cycles in coastal wetlands affecting C:N:P stoichiometry.However,the effects of restoration age on soil C:N:P stoichiometry are unclear.In this study,we examined the re-sponses of soil C,N,and P contents and their stoichiometric ratios to vegetation restoration age,focusing on below-ground processes and their relationships to aboveground vegetation community characteristics.We conducted an analysis of temporal gradients based on the'space for time'method to synthesize the effects of restoration age on soil C:N:P stoichiometry in the Yellow River Delta wetland of China.The findings suggest that the combined effects of restoration age and soil depth create complex patterns of shifting soil C:N:P stoichiometry.Specifically,restoration age significantly increased all topsoil C:N:P stoichiometries,except for soil total phosphorus(TP)and the C:N ratio,and slightly affected subsoil C:N:P stoichiometry.The effects of restoration age on the soil C:N ratio was well constrained owing to the coupled relationship between soil organic carbon(SOC)and total nitrogen(TN)contents,while soil TP con-tent was closely related to changes in plant species diversity.Importantly,we found that the topsoil C:N:P stoichiometry was signific-antly affected by plant species diversity,whereas the subsoil C:N:P stoichiometry was more easily regulated by pH and electric con-ductivity(EC).Overall,this study shows that vegetation restoration age elevated SOC and N contents and alleviated N limitation,which is useful for further assessing soil C:N:P stoichiometry in coastal restoration wetlands.
基金Under the auspices of the National Natural Science Foundation of China (No.72273151)。
文摘City cluster is an effective platform for encouraging regionally coordinated development.Coordinated reduction of carbon emissions within city cluster via the spatial association network between cities can help coordinate the regional carbon emission management,realize sustainable development,and assist China in achieving the carbon peaking and carbon neutrality goals.This paper applies the improved gravity model and social network analysis(SNA)to the study of spatial correlation of carbon emissions in city clusters and analyzes the structural characteristics of the spatial correlation network of carbon emissions in the Yangtze River Delta(YRD)city cluster in China and its influencing factors.The results demonstrate that:1)the spatial association of carbon emissions in the YRD city cluster exhibits a typical and complex multi-threaded network structure.The network association number and density show an upward trend,indicating closer spatial association between cities,but their values remain generally low.Meanwhile,the network hierarchy and network efficiency show a downward trend but remain high.2)The spatial association network of carbon emissions in the YRD city cluster shows an obvious‘core-edge’distribution pattern.The network is centered around Shanghai,Suzhou and Wuxi,all of which play the role of‘bridges’,while cities such as Zhoushan,Ma'anshan,Tongling and other cities characterized by the remote location,single transportation mode or lower economic level are positioned at the edge of the network.3)Geographic proximity,varying levels of economic development,different industrial structures,degrees of urbanization,levels of technological innovation,energy intensities and environmental regulation are important influencing factors on the spatial association of within the YRD city cluster.Finally,policy implications are provided from four aspects:government macro-control and market mechanism guidance,structural characteristics of the‘core-edge’network,reconfiguration and optimization of the spatial layout of the YRD city cluster,and the application of advanced technologies.
基金Supported by Special Soft Science Research Project for Hubei Province Science and Technology Innovation Talents and Services(2022EDA060).
文摘Establishing the Greater Food Approach and promoting the Yangtze River Economic Belt s national major regional development strategy can better support and serve the agricultural power and Chinese-style modernization.This paper introduces the characteristics of fruit industry in 16 autonomous prefectures and 47 autonomous counties under the jurisdiction of the Yangtze River Economic Belt.It studies the intellectual property resources of brand marks from the aspects of geographical indications,collective trademarks,certification trademarks,well-known trademarks in China and national design patents,and analyzes the main problems of brand and high-quality development of fruit industry in these ethnic autonomous areas.Finally,it puts forward some strategies,such as improving the protection of intellectual property rights of geographical indications,using intellectual property rights of brand signs,building modern seed industry upgrading project,drawing lessons from the experience of thousand villages demonstration project,ensuring that large-scale poverty does not occur,and building a diversified food supply system.
基金Under the auspices of the National Natural Science Foundation of China(No.71974070)‘CUG Scholar'Scientific Research Funds at China University of Geosciences(Wuhan)(No.2022005)。
文摘The spatial and temporal variation of green economic efficiency and its driving factors are of great significance for the construction of high-efficiency and low-consumption green development model and sustainable socio-economic development.The research focused on the Yangtze River Economic Belt(YREB)and employed the miniumum distance to strong efficient frontier DEA(MinDs)model to measure the green economic efficiency of the municipalities in the region between 2008 and 2020.Then,the spatial autocorrelation model was used to analyze the evolution characteristics of its spatial pattern.Finally,Geodetector was applied to reveal the drivers and their interactions on green economic efficiency.It is found that:1)the overall green economic efficiency of the YREB from 2008 to 2020 shows a W-shaped fluctuating upward trend,green economic efficiency is greater in the downstream and smallest in the upstream;2)the spatial distribution of green economic efficiency shows clustering characteristics,with multi-core clustering based on‘city clusters-central cities'becoming more obvious over time;the High-High agglomeration type is mainly clustered in Jiangsu and Zheji-ang,while the Low-Low agglomeration type is clustered in the western Sichuan Plateau area and southwestern Yunnan;3)from input-output factors,whether it is the YREB as a whole or the upper,middle and lower reaches regions,the economic development level,labor input,and capital investment are the leading factors in the spatial-temporal evolution of green economic efficiency,with the com-prehensive influence of economic development level and pollution index being the most important interactive driving factor;4)from so-cio-economic factors,information technology drivers such as government intervention,transportation accessibility,information infra-structure,and Internet penetration are always high impact influencers and dominant interaction factors for green economic efficiency in the YREB and the three major regions in the upper,middle and lower reaches.Accordingly,the article puts forward relevant policy re-commendations in terms of formulating differentiated green transformation strategies,strengthening network leadership and informa-tion technology construction and coordinating multi-factor integrated development,which could provide useful reference for promoting synergistic green economic efficiency in the YREB.