The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosp...The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosphorus, as well as iron and zinc foliar applications on mustard growth under rainfed conditions. The results indicated that biofertilizers, whether used alone or in combination with chemical fertilizers, produced comparable grain and oil outputs compared to chemical fertilizers alone. Additionally, the application of iron and zinc through foliar spraying significantly enhanced both grain and oil production. These findings suggest that integrating nitrogen-fixing bacteria and biofertilizers could reduce reliance on chemical nitrogenous fertilizers, leading to decreased production expenses, improved product quality, and minimized environmental impact. This study highlights the potential for sustainable agricultural practices in dry land farming as a viable alternative to traditional chemical-intensive methods. Substituting chemical nitrogenous fertilizers with nitrogen-fixing bacteria or biofertilizers could result in cost savings in mustard grain and oil production while promoting environmental sustainability.展开更多
Decomposition of anthraquinone Vat Yellow 1 in an aqueous solution was investigated for this study. Heterogeneous photocatalysis using zinc oxide photocatalyst in aqueous solution under UV and solar irradiation was pr...Decomposition of anthraquinone Vat Yellow 1 in an aqueous solution was investigated for this study. Heterogeneous photocatalysis using zinc oxide photocatalyst in aqueous solution under UV and solar irradiation was proposed to decompose anthraquinone Vat Yellow 1. Decomposition of the dye was effective under both irradiations using the zinc oxide photocatalyst. The effects of zinc oxide dose and dye concentration on the decomposition of Vat Yellow 1 under UV irradiation were investigated to assess the optimum conditions. Decomposition efficiency of Vat Yellow 1 dye increased as zinc oxide amount increased and decreased as the initial dye concentration increased. The decomposition kinetics was established to follow first-order kinetics. A study on the presence of inorganic additives such as sodium carbonate (Na2CO3) and sodium chloride (NaCl) was found to decrease the decomposition.展开更多
In this paper, the reactive yellow 14 dye solution was removed from aqueous solution in the presence of commercial ZnO (mean crystallite size is 44.116 nm) under the UV A light. The decolourization of dye process was ...In this paper, the reactive yellow 14 dye solution was removed from aqueous solution in the presence of commercial ZnO (mean crystallite size is 44.116 nm) under the UV A light. The decolourization of dye process was obeyed to pseudo-first orderkinetics. The optimum conditions of decolourization for this dye such as: initial dye concentration 50 mg/L, best dose of ZnO 350 mg/100mL and initial pH of aqueous solution of dye 6.75 were studied. Activation energies for dye were found to be 27.244 kJmol<sup>-1</sup>. The photoreaction process was observed to be endothermic reaction and less randomness.展开更多
文摘The study, conducted at the Research Farm of the College of Agriculture, University of Tabriz in 2021, focused on the effects of various nitrogen-fixing bacterial isolates, biofertilizers containing nitrogen and phosphorus, as well as iron and zinc foliar applications on mustard growth under rainfed conditions. The results indicated that biofertilizers, whether used alone or in combination with chemical fertilizers, produced comparable grain and oil outputs compared to chemical fertilizers alone. Additionally, the application of iron and zinc through foliar spraying significantly enhanced both grain and oil production. These findings suggest that integrating nitrogen-fixing bacteria and biofertilizers could reduce reliance on chemical nitrogenous fertilizers, leading to decreased production expenses, improved product quality, and minimized environmental impact. This study highlights the potential for sustainable agricultural practices in dry land farming as a viable alternative to traditional chemical-intensive methods. Substituting chemical nitrogenous fertilizers with nitrogen-fixing bacteria or biofertilizers could result in cost savings in mustard grain and oil production while promoting environmental sustainability.
文摘Decomposition of anthraquinone Vat Yellow 1 in an aqueous solution was investigated for this study. Heterogeneous photocatalysis using zinc oxide photocatalyst in aqueous solution under UV and solar irradiation was proposed to decompose anthraquinone Vat Yellow 1. Decomposition of the dye was effective under both irradiations using the zinc oxide photocatalyst. The effects of zinc oxide dose and dye concentration on the decomposition of Vat Yellow 1 under UV irradiation were investigated to assess the optimum conditions. Decomposition efficiency of Vat Yellow 1 dye increased as zinc oxide amount increased and decreased as the initial dye concentration increased. The decomposition kinetics was established to follow first-order kinetics. A study on the presence of inorganic additives such as sodium carbonate (Na2CO3) and sodium chloride (NaCl) was found to decrease the decomposition.
文摘In this paper, the reactive yellow 14 dye solution was removed from aqueous solution in the presence of commercial ZnO (mean crystallite size is 44.116 nm) under the UV A light. The decolourization of dye process was obeyed to pseudo-first orderkinetics. The optimum conditions of decolourization for this dye such as: initial dye concentration 50 mg/L, best dose of ZnO 350 mg/100mL and initial pH of aqueous solution of dye 6.75 were studied. Activation energies for dye were found to be 27.244 kJmol<sup>-1</sup>. The photoreaction process was observed to be endothermic reaction and less randomness.