期刊文献+
共找到346篇文章
< 1 2 18 >
每页显示 20 50 100
Study in Soybean Yield Forecast Application Based on Hopfield ANN Model 被引量:2
1
作者 WANGLi-shu QIGuo-qiang WANGKe-fei 《Journal of Northeast Agricultural University(English Edition)》 CAS 2004年第2期176-178,共3页
Using the artificial nerve network′s knowledge, establish the estimate′s mathematics model of the soybean′s yield, and by the model we can increase accuracy of the soybean yield forecast.
关键词 artificial neutral networks HOPFIELD SOYBEAN yield forecast
下载PDF
Crop Yield Forecasted Model Based on Time Series Techniques
2
作者 Li Hong-ying Hou Yan-lin +1 位作者 Zhou Yong-juan Zhao Hui-ming 《Journal of Northeast Agricultural University(English Edition)》 CAS 2012年第1期73-77,共5页
Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions wa... Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions was defined in this paper, which was affected by advancement of science and technology. Based on the new concept of crop yield, the time series techniques relying on past yield data was employed to set up a forecasting model. The model was tested by using average grain yields of Liaoning Province in China from 1949 to 2005. The testing combined dynamic n-choosing and micro tendency rectification, and an average forecasting error was 1.24%. In the trend line of yield change, and then a yield turning point might occur, in which case the inflexion model was used to solve the problem of yield turn point. 展开更多
关键词 potential yield forecasting model time series technique yield turning point yield channel
下载PDF
Remote Sensing and GIS Based Spectro-Agrometeorological Maize Yield Forecast Model for South Tigray Zone, Ethiopia
3
作者 Abiy Wogderes Zinna Karuturi Venkata Suryabhagavan 《Journal of Geographic Information System》 2016年第2期282-292,共11页
Remote-sensing data acquired by satellite imageries have a wide scope in agricultural applications owing to their synoptic and repetitive coverage. This study reports the development of an operational spectro-agromete... Remote-sensing data acquired by satellite imageries have a wide scope in agricultural applications owing to their synoptic and repetitive coverage. This study reports the development of an operational spectro-agrometereological yield model for maize crop derived from time series data of SPOT VEGETATION, actual and potential evapotranspiration and rainfall estimate satellite data for the years 2003-2012. Indices of these input data were utilized to validate their strength in explaining grain yield recorded by the Central Statistical Agency through correlation analyses. Crop masking at crop land area was applied and refined using agro-ecological zones suitable for maize. Rainfall estimates and average Normalized Difference Vegetation Index were found highly correlated to maize yield with the former accounting for 85% variation and the latter 80%, respectively. The developed spectro-agrometeorological yield model was successfully validated against the predicted Zone level yields estimated by Central Statistical Agency (r<sup>2</sup> = 0.88, RMSE = 1.405 q·ha<sup>-1</sup> and 21% coefficient of variation). Thus, remote sensing and geographical information system based maize yield forecast improved quality and timelines of the data besides distinguishing yield production levels/areas and making intervention very easy for the decision makers thereby proving the clear potential of spectro-agrometeorological factors for maize yield forecasting, particularly for Ethiopia. 展开更多
关键词 Ethiopia forecast Model GIS Maize yield NDVI Remote Sensing RFE
下载PDF
Durum wheat yield forecasting using machine learning 被引量:1
4
作者 Nabila Chergui 《Artificial Intelligence in Agriculture》 2022年第1期156-166,共11页
A reliable and accurate forecasting model for crop yields is crucial for effective decision-making in every agricultural sector.Machine learning approaches allow for building such predictive models,but the quality of ... A reliable and accurate forecasting model for crop yields is crucial for effective decision-making in every agricultural sector.Machine learning approaches allow for building such predictive models,but the quality of predictions decreases if data is scarce.In this work,we proposed data-augmentation for wheat yield forecasting in the presence of small data sets of two distinct Provinces in Algeria.We first increased the dimension of each data set by adding more features,and then we augmented the size of the data by merging the two data sets.To assess the effectiveness of data-augmentation approaches,we conducted three sets of experiments based on three data sets:the primary data sets,data sets with additional features and the augmented data sets obtained by merging,using five regression models(Support Vector Regression,Random Forest,Extreme Learning Machine,Artificial Neural Network,Deep Neural Network).To evaluate the models,we used cross-validation;the results showed an overall increase in performance with the augmented data.DNN outperformed the other models for the first Province with a Root Mean Square Error(RMSE)of 0.04 q/ha and R_Squared(R^(2))of 0.96,whereas the Random Forest outperformed the other models for the second Province with RMSE of 0.05 q/ha. 展开更多
关键词 Machine learning yield forecast Deep learning Data augmentation Regression Climate data
原文传递
Forecasting of Runoff and Sediment Yield Using Artificial Neural Networks 被引量:1
5
作者 Avinash AGARWAL R. K. RAI Alka UPADHYAY 《Journal of Water Resource and Protection》 2009年第5期368-375,共8页
Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling techniq... Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling technique. The results were compared with those of single- and multi-input linear transfer function models. In BPANN, the maximum value of variable was considered for normalization of input, and a pattern learning algorithm was developed. Input variables in the model were obtained by comparing the response with their respective standard error. The network parsimony was achieved by pruning the network using error sensitiv-ity - weight criterion, and model generalization by cross validation. The performance was evaluated using correlation coefficient (CC), coefficient of efficiency (CE), and root mean square error (RMSE). The single input linear transfer function (SI-LTF) runoff and sediment yield forecasting models were more efficacious than the multi input linear transfer function (MI-LTF) and ANN models. 展开更多
关键词 Artificial NEURAL NETWORK forecasting RUNOFF SEDIMENT yield
下载PDF
Forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong
6
作者 WANG Ye ZHANG Qiu-lan +1 位作者 WANG Shi-chang SHAO Jing-li 《Journal of Groundwater Science and Engineering》 2015年第4期342-351,共10页
This paper compares analytical and numerical methods by taking the forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong as an example. Regarding the analytical method, the equation of infinite and ... This paper compares analytical and numerical methods by taking the forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong as an example. Regarding the analytical method, the equation of infinite and bilateral water inflow boundary is used to forecast the water yield, and in the case of numerical simulation, we employed the GMS software to establish a model and further to forecast the water yield. On the one hand, through applying the analytical method, the maximum water yield of mine 1 500 m deep below the surface was calculated to be 13 645.17 m3/d; on the other hand, through adopting the numerical method, we obtained the predicted result of 3 816.16 m3/d. Meanwhile, by using the boundary generalization in the above-mentioned two methods, and through a comparative analysis of the actual hydro-geological conditions in this deep-buried mine, which also concerns the advantages and disadvantages of the two methods respectively, this paper draws the conclusion that the analytical method is only applicable in ideal conditions, but numerical method is eligible to be used in complex hydro-geological conditions. Therefore, it is more applicable to employ the numerical method to forecast water yield of deep-buried iron mine in Yanzhou, Shandong. 展开更多
关键词 Analytical method Numerical simulation forecasting of water yield Yanzhou deep-buried iron mine
下载PDF
Analysis and Forecasting of the Impact of Climatic Parameters on the Yield of Rain-Fed Rice Cultivation in the Office Riz Mopti in Mali
7
作者 Angora Aman Moussa Nafogou +2 位作者 Hermann Vami N’Guessan Bi Yves K. Kouadio Hélène Boyossoro Kouadio 《Atmospheric and Climate Sciences》 2019年第3期479-497,共19页
During the period spanning the 1970s and1980s, countries in the West African Sahel experienced severe drought. Its impact on agriculture and ecosystems has highlighted the importance of monitoring the Sahelian rainy s... During the period spanning the 1970s and1980s, countries in the West African Sahel experienced severe drought. Its impact on agriculture and ecosystems has highlighted the importance of monitoring the Sahelian rainy season. In Sahelian countries such as Mali, rainfall is the major determinant of crop production. Unfortunately, rainfall is highly variable in time and space. Therefore, this study is conducted to analyze and forecast the impact of climatic parameters on the rain-fed rice yield cultivation in the Office Riz Mopti region. The data were collected from satellite imagery, archived meteorology data, yield and rice characteristics. The study employed Hanning filter to highlight interannual fluctuation, a test of Pettitt and the standardized precipitation index (SPI) to analyze the rainfall variability. Climate change scenarios under the RCP 8.5 scenario (HadGEM-2 ES) and agroclimatic (Cropwat) model are carried out to simulate the future climate and its impact on rice yields. The results of satellite image classifications of 1986 and 2016 show an increase of rice fields with a noticeable decrease of bare soil. The analysis of the SPI reveals that over the 30 years considered, 56.67% of the rainy seasons were dry (1986-2006) and 43.33% were wet (2007-2015). The modelling approach is applied over 1986-2006 and 2007-2015 periods—considered as typical dry and rainy years—and applied over the future, with forecasts of climate change scenarios in 2034. The results show a decrease in potential yield during dry and slightly wet years. The yields of rain-fed rice will be generally low between 2016 and 2027. Deficits are observed over the entire study area, in comparison with the potential yield. Thus, this situation could expose the population to food insecurity. 展开更多
关键词 CLIMATE Change Remote Sensing Rain-Fed Rice forecast yield MALI
下载PDF
基于天气预报的泾惠渠灌区参考作物滕发量预报模型研究
8
作者 韩红亮 胡文兵 +1 位作者 王雪梅 董爱红 《陕西水利》 2024年第10期1-3,14,共4页
农业节水背景下,对泾惠渠灌区参考作物滕发量预报方法进行研究,选用Hargreaves-Samani公式作为预报模型,运用中国气象数据网泾河站2008年~2020年13个年份的气象数据进行SPSS参数反演,并采用2022年的实测气象数据进行验证,表明适合泾惠... 农业节水背景下,对泾惠渠灌区参考作物滕发量预报方法进行研究,选用Hargreaves-Samani公式作为预报模型,运用中国气象数据网泾河站2008年~2020年13个年份的气象数据进行SPSS参数反演,并采用2022年的实测气象数据进行验证,表明适合泾惠渠灌区的Hargreaves-Samani模型参数为C=0.00122、a=14.19、m=0.259。通过验证,83.2%验证值相对误差在20%以内,同时表明Hargreaves-Samani模型进行参考作物滕发量预报时,呈现“夏季>春季>秋季>冬季”的精度分布规律,可为灌区灌溉预报和智慧水利发展提供实用的理论依据。 展开更多
关键词 泾惠渠灌区 参考作物滕发量 预报模型 Hargreaves-Samani公式
下载PDF
基于气候变量的苎麻产量SSA-BP预测模型
9
作者 王辉 付虹雨 +2 位作者 岳云开 崔国贤 佘玮 《中国农业科技导报》 CSCD 北大核心 2024年第1期110-118,共9页
苎麻产量与生长期间的气候因子具有极高相关性,基于气候变量构建的苎麻产量预测模型能够有效精准预测最终产量。BP(back propagation)神经网络具有强大的数据分析能力,在作物产量预测建模中得到广泛应用,然而传统BP神经网络存在精度低... 苎麻产量与生长期间的气候因子具有极高相关性,基于气候变量构建的苎麻产量预测模型能够有效精准预测最终产量。BP(back propagation)神经网络具有强大的数据分析能力,在作物产量预测建模中得到广泛应用,然而传统BP神经网络存在精度低、鲁棒性差等问题,可采用麻雀搜索算法(sparrow search algorithm,SSA)对BP神经网络模型进行优化。基于2010—2019年苎麻长期定位试验采集的纤维产量、鲜皮产量和气候数据,分析气候因子在10年内的变化趋势及其对多年生苎麻产量的影响,对比构建的BP神经网络模型及优化后的SSA-BP神经网络模型预测苎麻产量的性能,确定最佳的苎麻产量预测模型。结果表明,苎麻产量与季平均气温、季极端最高气温均值、季极端最低气温均值、季日照时数均值4项气候因子具有极显著相关关系。SSA算法能有效优化BP神经网络,基于SSA-BP的苎麻纤维产量预测模型和鲜皮产量预测模型的R^(2)分别为0.5913和0.6791,高于BP神经网络的苎麻纤维产量预测模型(R^(2)=0.4057)和鲜皮产量预测模型(R^(2)=0.5518)。因此,SSA-BP模型能够更加科学、合理地预测苎麻产量,对于苎麻生产的田间管理及统筹规划具有重要指导意义。 展开更多
关键词 产量预测 气候因子 麻雀搜索算法 BP神经网络
下载PDF
作物生长模型研究现状与展望 被引量:2
10
作者 蒙继华 王亚楠 +1 位作者 林圳鑫 方慧婷 《农业机械学报》 EI CAS CSCD 北大核心 2024年第2期1-15,27,共16页
作物生长模型由最初的作物生长发育模型发展到农业决策支持模型,在科学研究、农业管理、政策制定等方面发挥着越来越重要的作用。本文首先回顾了作物生长模型的发展过程,并按照模型主要驱动因子,将作物生长模型分为土壤因子、光合作用... 作物生长模型由最初的作物生长发育模型发展到农业决策支持模型,在科学研究、农业管理、政策制定等方面发挥着越来越重要的作用。本文首先回顾了作物生长模型的发展过程,并按照模型主要驱动因子,将作物生长模型分为土壤因子、光合作用因子和人为因子驱动3类并分别进行了归纳阐述;然后对典型的模型分别从模型模块、时空尺度、可模拟的作物类型等方面进行列表式对比;并对作物生长模型在气候变化评估、生产管理决策支持、资源管理优化等方面的应用,以及面临的极端条件、复杂农业景观和模型复杂度等挑战进行了总结,在此基础上认为遥感数据同化和孪生农场是其发展方向。 展开更多
关键词 作物生长模型 长势监测 作物估产 驱动因子 遥感 孪生农场
下载PDF
Growth simulation and yield prediction for perennial jujube fruit tree by integrating age into the WOFOST model 被引量:7
11
作者 BAI Tie-cheng WANG Tao +2 位作者 ZHANG Nan-nan CHEN You-qi Benoit MERCATORIS 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第3期721-734,共14页
Mathematical models have been widely employed for the simulation of growth dynamics of annual crops,thereby performing yield prediction,but not for fruit tree species such as jujube tree(Zizyphus jujuba).The objective... Mathematical models have been widely employed for the simulation of growth dynamics of annual crops,thereby performing yield prediction,but not for fruit tree species such as jujube tree(Zizyphus jujuba).The objectives of this study were to investigate the potential use of a modified WOFOST model for predicting jujube yield by introducing tree age as a key parameter.The model was established using data collected from dedicated field experiments performed in 2016-2018.Simulated growth dynamics of dry weights of leaves,stems,fruits,total biomass and leaf area index(LAI) agreed well with measured values,showing root mean square error(RMSE) values of 0.143,0.333,0.366,0.624 t ha^-1 and 0.19,and R2 values of 0.947,0.976,0.985,0.986 and 0.95,respectively.Simulated phenological development stages for emergence,anthesis and maturity were 2,3 and 3 days earlier than the observed values,respectively.In addition,in order to predict the yields of trees with different ages,the weight of new organs(initial buds and roots) in each growing season was introduced as the initial total dry weight(TDWI),which was calculated as averaged,fitted and optimized values of trees with the same age.The results showed the evolution of the simulated LAI and yields profiled in response to the changes in TDWI.The modelling performance was significantly improved when it considered TDWI integrated with tree age,showing good global(R2≥0.856,RMSE≤0.68 t ha^-1) and local accuracies(mean R2≥0.43,RMSE≤0.70 t ha^-1).Furthermore,the optimized TDWI exhibited the highest precision,with globally validated R2 of 0.891 and RMSE of 0.591 t ha^-1,and local mean R2 of 0.57 and RMSE of 0.66 t ha^-1,respectively.The proposed model was not only verified with the confidence to accurately predict yields of jujube,but it can also provide a fundamental strategy for simulating the growth of other fruit trees. 展开更多
关键词 fruit tree growth simulation yield forecasting crop model tree age
下载PDF
伊宁市冬小麦产量预报模型研究
12
作者 马玉平 吾米提·居马太 +2 位作者 伊里亚尔·叶克木江 解帅 普宗朝 《陕西农业科学》 2024年第6期33-37,共5页
基于1976—2019年伊宁市冬小麦单产数据和气象资料,分析伊宁市近43 a冬小麦单产的变化情况,得到伊宁市冬小麦趋势产量的计算方程;计算出小麦气象产量,选取冬小麦生长期间的气温、降水和日照时数等的旬月值,分析气象产量与气象因子之间... 基于1976—2019年伊宁市冬小麦单产数据和气象资料,分析伊宁市近43 a冬小麦单产的变化情况,得到伊宁市冬小麦趋势产量的计算方程;计算出小麦气象产量,选取冬小麦生长期间的气温、降水和日照时数等的旬月值,分析气象产量与气象因子之间的关系,找出影响小麦产量的关键发育时段和主要影响因子,结合小麦生长发育状况,挑选出冬小麦气象产量预报因子,建立小麦气象产量预报方程,最后得出伊宁市冬小麦产量预报方程。经近4 a实际单产数据验证,预测效果较好,可以在业务中使用。研究结果可用于指导生产,指导农民改进冬小麦种植及田间管理方式,还可为政府部门制定保障粮食安全的决策提供科学依据。 展开更多
关键词 伊宁市 冬小麦 产量预报 关键发育期 模型研究
下载PDF
基于注意力机制的ADE-Bi-IndRNN模型的中国粮食产量预测
13
作者 吴彬溶 王林 《运筹与管理》 CSCD 北大核心 2024年第1期102-107,共6页
为更加准确地预测我国粮食总产量,基于自适应差分进化算法来智能地选择基于注意力机制的双向独立循环神经网络的超参数,并考虑了粮食作物单位产量、农业生产条件、科技因素、农业保险、市场及经济因素五大类影响因素,构建了基于注意力... 为更加准确地预测我国粮食总产量,基于自适应差分进化算法来智能地选择基于注意力机制的双向独立循环神经网络的超参数,并考虑了粮食作物单位产量、农业生产条件、科技因素、农业保险、市场及经济因素五大类影响因素,构建了基于注意力机制的ADE-Bi-IndRNN粮食产量预测模型。经过预测分析得出我国2020—2024的粮食产量分别为6.67亿吨、6.72亿吨、6.80亿吨、6.99亿吨、7.02亿吨,总体呈现震荡上涨趋势,平均年增长率为1.15%。同时,通过对多个变量进行的注意力权重的分析,发现现阶段对我国粮食总产量预测贡献最大的三个变量为:谷物单位面积产量,粮食作物总播种面积,耕地灌溉面积,且政府对农业保险的政策性补贴、粮食进口量、谷物生产价格指数、农业生产资料指数也有助于提升我国的粮食总产量,并据此对我国粮食行业发展提出了建议。 展开更多
关键词 粮食产量 多因素时间序列预测 深度学习 智能算法
下载PDF
A Novel Approach for Sugarcane Yield Prediction Using Landsat Time Series Imagery: A Case Study on Bundaberg Region 被引量:1
14
作者 Muhammad Moshiur Rahman Andrew J. Robson 《Advances in Remote Sensing》 2016年第2期93-102,共10页
Quantifying sugarcane production is critical for a wide range of applications, including crop management and decision making processes such as harvesting, storage, and forward selling. This study explored a novel mode... Quantifying sugarcane production is critical for a wide range of applications, including crop management and decision making processes such as harvesting, storage, and forward selling. This study explored a novel model for predicting sugarcane yield in Bundaberg region from time series Landsat data. From the freely available Landsat archive, 98 cloud free (<40%) Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) images, acquired between November 15th to July 31<sup>st</sup> (2001-2015) were sourced for this study. The images were masked using the field boundary layer vector files of each year and the GNDVI was calculated. An analysis of average green normalized difference vegetation index (GNDVI) values from all sugarcane crops grown within the Bundaberg region over the 15 year period identified the beginning of April as the peak growth stage and, therefore, the optimum time for satellite image based yield forecasting. As the GNDVI is an indicator of crop vigor, the model derived maximum GNDVI was regressed against historical sugarcane yield data, which showed a significant correlation with R<sup>2</sup> = 0.69 and RMSE = 4.2 t/ha. Results showed that the model derived maximum GNDVI from Landsat imagery would be a feasible and a modest technique to predict sugarcane yield in Bundaberg region. 展开更多
关键词 SUGARCANE yield forecasting LANDSAT GNDVI
下载PDF
基于GBDT算法的吉林省玉米产量预测模型研究
15
作者 徐子曦 唐友 +3 位作者 钟闻宇 韩烨 毕春光 李明亮 《智慧农业导刊》 2024年第2期15-18,共4页
玉米是我国种植面积最广、产量最高、食用最多的3种主要农作物之一,掌握科学预测玉米产量的技术,可以为农业的种植规划、粮食储存加工、市场调控提供技术支持。该文兼顾气象因素和土壤因素,建立BP神经网络模型、RBF径向基神经网络模型、... 玉米是我国种植面积最广、产量最高、食用最多的3种主要农作物之一,掌握科学预测玉米产量的技术,可以为农业的种植规划、粮食储存加工、市场调控提供技术支持。该文兼顾气象因素和土壤因素,建立BP神经网络模型、RBF径向基神经网络模型、GBDT梯度提升决策树模型,对吉林省各县市玉米产量进行回归分析,对比分析其误差。实验结果中,GBDT模型预测的产量和真实产量间的拟合程度较高,R2达到0.92,可以在吉林省各县市玉米产量预测中表现出较好的效果。结果表明该模型对吉林省40个县市玉米产量进行预测的可行性,数据易于获取,能够帮助政府农业部门制定相关政策和方针指导生产。 展开更多
关键词 玉米产量 GBDT 预测模型 气象因素 回归分析
下载PDF
石河子棉花生长关键期与产量动态预报研究
16
作者 苏朝丞 葛怡成 +2 位作者 谢葭颖 许浩翊 王啸天 《中国农学通报》 2024年第2期102-106,共5页
棉花是新疆地区主要经济作物之一,开展棉花产量动态预报对生产安全具有重要意义。利用1968—2020年新疆石河子地区4个地面气象基准站逐日气象资料和棉花产量资料,基于积分回归法在棉花全生育期内以旬为时间尺度,分析了影响棉花生产的温... 棉花是新疆地区主要经济作物之一,开展棉花产量动态预报对生产安全具有重要意义。利用1968—2020年新疆石河子地区4个地面气象基准站逐日气象资料和棉花产量资料,基于积分回归法在棉花全生育期内以旬为时间尺度,分析了影响棉花生产的温光水主要气象要素和关键期,分别建立了石河子地区7月中旬、8月中旬和9月中旬棉花气象产量动态预报模型。结果表明:气温对新疆石河子棉花产量的影响最大,苗期、开花期和吐絮始期为棉花生长的温度关键期,苗期和吐絮始期为正效应显著,开花期为负效应显著;开花期是棉花生长的光照关键期,对棉花产量呈正效应;石河子地区属于灌溉农业区,自然降水量虽呈正效应,但降水量对棉花产量的影响较小。利用积分回归法建立的动态预报模型对2018—2020年石河子地区棉花产量试报,7月中旬、8月中旬及9月中旬的平均准确率分别为85.1%、91.4%和94.3%。基于积分回归法建立的棉花气象产量动态预报模型越接近成熟期准确率越高。利用积分回归原理对棉花产量进行动态预测是可行的,可以应用于棉花产量预测业务,为地方产量预测提供参考。 展开更多
关键词 积分回归法 棉花 关键期 产量 动态预报
下载PDF
基于灰色系统理论的玉米产量影响因素分析及预测——以湖南省为例
17
作者 宾炜华 《南方农机》 2024年第1期30-33,共4页
【目的】了解玉米产量和各种影响因素之间更加深层的关系,精确地预测玉米产量。【方法】使用MATLAB软件,选用湖南省2000—2019年的玉米产量及其相关因素的数据,对玉米产量的影响指标进行灰色关联分析,将其按照灰色关联度大小进行排序。... 【目的】了解玉米产量和各种影响因素之间更加深层的关系,精确地预测玉米产量。【方法】使用MATLAB软件,选用湖南省2000—2019年的玉米产量及其相关因素的数据,对玉米产量的影响指标进行灰色关联分析,将其按照灰色关联度大小进行排序。同时使用GM(1,1)灰色预测模型,对湖南省2020—2024年的玉米产量进行预测。【结果】对2000—2019年湖南省玉米产量影响最大的指标为玉米播种面积、农用化肥施用折纯量,其次是农业机械化动力、农用塑料薄膜使用量,这两个指标影响也较大。GM(1,1)模型预测结果表明,2020—2024年湖南省玉米产量逐渐增长。 展开更多
关键词 灰色关联分析 灰色预测模型 产量预测
下载PDF
机器学习算法在股市股票收益率变化预测中的应用研究
18
作者 冯瑜 《贵阳学院学报(自然科学版)》 2024年第2期6-10,共5页
针对当前基于机器学习算法的股市股票收益率预测方法精度和效率不够理想的缺陷,提出了一种股市股票收益率预测模型。首先,针对股票数据中含有较多噪声的问题,采用小波变换算法对其进行降噪处理。然后,基于已有的研究成果和股市现状,构... 针对当前基于机器学习算法的股市股票收益率预测方法精度和效率不够理想的缺陷,提出了一种股市股票收益率预测模型。首先,针对股票数据中含有较多噪声的问题,采用小波变换算法对其进行降噪处理。然后,基于已有的研究成果和股市现状,构建了股票收益率预测指标体系。最后,针对SVM的缺陷,采用一种改进的果蝇算法对其进行优化,并构建股票收益率预测模型。测试结果显示,IFOA-SVM模型的误差值为0.18,Loss值为0.23,预测精度达到95%,AUC值为0.954。研究提出的方法能够准确预测股票收益率,从而提高投资者收益,刺激股票市场的发展。 展开更多
关键词 机器学习 股票 收益率 预测 SVM
下载PDF
基于机器学习的小麦产量预估模型设计与实现
19
作者 樊弋鸣 王黎光 《山西电子技术》 2024年第4期57-59,共3页
2021年政府工作报告中提到“十四五”时期,继续保持粮食综合生产能力在13万亿斤以上,严守18亿亩耕地红线,实施高标准农田建设工程,确保种源安全。基于物联网大数据的小麦产量预估模型设计与实现,对小麦产量预测背景及意义进行了研究,并... 2021年政府工作报告中提到“十四五”时期,继续保持粮食综合生产能力在13万亿斤以上,严守18亿亩耕地红线,实施高标准农田建设工程,确保种源安全。基于物联网大数据的小麦产量预估模型设计与实现,对小麦产量预测背景及意义进行了研究,并对小麦产量预估模型进行技术、经济及操作方面的可行性分析,运用数据可视化技术,对近五年小麦在不同环境下的产量进行直观展现,并据此分析出影响小麦产量的主要因素。同时采用LightGBM(简称:LGB)模型和XGBoost(简称:XGB)模型作为关键技术,构建小麦产量预估模型,将预估的小麦产量与实际产量进行比对,误差控制在5 kg之内,具有良好的预测效果。 展开更多
关键词 产量预测 LGB模型 XGB模型 数据可视化
下载PDF
基于GA-XGBoost算法的河南省粮食产量预测研究
20
作者 付金鹏 王哲 《现代计算机》 2024年第6期107-110,共4页
粮食问题关乎国家命运,是国民经济发展基础中的基础。粮食产量的变化直接关系到我国的粮食安全和农业结构的优化调整。为提高河南省粮食产量预测的精度和效率,对河南省粮食产量等相关数据进行归纳分析,利用皮尔逊(Pearson)相关性影响分... 粮食问题关乎国家命运,是国民经济发展基础中的基础。粮食产量的变化直接关系到我国的粮食安全和农业结构的优化调整。为提高河南省粮食产量预测的精度和效率,对河南省粮食产量等相关数据进行归纳分析,利用皮尔逊(Pearson)相关性影响分析确定主要影响河南省粮食产量的因素。针对XGBoost模型容易过拟合、预测不精准的问题,引入遗传算法(GA)对其学习率、树的深度等进行优化,以更准确地预测河南省粮食产量。仿真结果表明:相比于传统的XGBoost模型,GA-XGBoost模型具有更高的预测精度,RMSE仅为0.034。因此,GA-XGBoost预测模型可以对粮食产量进行更为准确的预测。 展开更多
关键词 粮食产量预测 XGBoost算法 遗传算法 皮尔逊(Pearson)相关性
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部