Using the artificial nerve network′s knowledge, establish the estimate′s mathematics model of the soybean′s yield, and by the model we can increase accuracy of the soybean yield forecast.
Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions wa...Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions was defined in this paper, which was affected by advancement of science and technology. Based on the new concept of crop yield, the time series techniques relying on past yield data was employed to set up a forecasting model. The model was tested by using average grain yields of Liaoning Province in China from 1949 to 2005. The testing combined dynamic n-choosing and micro tendency rectification, and an average forecasting error was 1.24%. In the trend line of yield change, and then a yield turning point might occur, in which case the inflexion model was used to solve the problem of yield turn point.展开更多
Remote-sensing data acquired by satellite imageries have a wide scope in agricultural applications owing to their synoptic and repetitive coverage. This study reports the development of an operational spectro-agromete...Remote-sensing data acquired by satellite imageries have a wide scope in agricultural applications owing to their synoptic and repetitive coverage. This study reports the development of an operational spectro-agrometereological yield model for maize crop derived from time series data of SPOT VEGETATION, actual and potential evapotranspiration and rainfall estimate satellite data for the years 2003-2012. Indices of these input data were utilized to validate their strength in explaining grain yield recorded by the Central Statistical Agency through correlation analyses. Crop masking at crop land area was applied and refined using agro-ecological zones suitable for maize. Rainfall estimates and average Normalized Difference Vegetation Index were found highly correlated to maize yield with the former accounting for 85% variation and the latter 80%, respectively. The developed spectro-agrometeorological yield model was successfully validated against the predicted Zone level yields estimated by Central Statistical Agency (r<sup>2</sup> = 0.88, RMSE = 1.405 q·ha<sup>-1</sup> and 21% coefficient of variation). Thus, remote sensing and geographical information system based maize yield forecast improved quality and timelines of the data besides distinguishing yield production levels/areas and making intervention very easy for the decision makers thereby proving the clear potential of spectro-agrometeorological factors for maize yield forecasting, particularly for Ethiopia.展开更多
A reliable and accurate forecasting model for crop yields is crucial for effective decision-making in every agricultural sector.Machine learning approaches allow for building such predictive models,but the quality of ...A reliable and accurate forecasting model for crop yields is crucial for effective decision-making in every agricultural sector.Machine learning approaches allow for building such predictive models,but the quality of predictions decreases if data is scarce.In this work,we proposed data-augmentation for wheat yield forecasting in the presence of small data sets of two distinct Provinces in Algeria.We first increased the dimension of each data set by adding more features,and then we augmented the size of the data by merging the two data sets.To assess the effectiveness of data-augmentation approaches,we conducted three sets of experiments based on three data sets:the primary data sets,data sets with additional features and the augmented data sets obtained by merging,using five regression models(Support Vector Regression,Random Forest,Extreme Learning Machine,Artificial Neural Network,Deep Neural Network).To evaluate the models,we used cross-validation;the results showed an overall increase in performance with the augmented data.DNN outperformed the other models for the first Province with a Root Mean Square Error(RMSE)of 0.04 q/ha and R_Squared(R^(2))of 0.96,whereas the Random Forest outperformed the other models for the second Province with RMSE of 0.05 q/ha.展开更多
Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling techniq...Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling technique. The results were compared with those of single- and multi-input linear transfer function models. In BPANN, the maximum value of variable was considered for normalization of input, and a pattern learning algorithm was developed. Input variables in the model were obtained by comparing the response with their respective standard error. The network parsimony was achieved by pruning the network using error sensitiv-ity - weight criterion, and model generalization by cross validation. The performance was evaluated using correlation coefficient (CC), coefficient of efficiency (CE), and root mean square error (RMSE). The single input linear transfer function (SI-LTF) runoff and sediment yield forecasting models were more efficacious than the multi input linear transfer function (MI-LTF) and ANN models.展开更多
This paper compares analytical and numerical methods by taking the forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong as an example. Regarding the analytical method, the equation of infinite and ...This paper compares analytical and numerical methods by taking the forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong as an example. Regarding the analytical method, the equation of infinite and bilateral water inflow boundary is used to forecast the water yield, and in the case of numerical simulation, we employed the GMS software to establish a model and further to forecast the water yield. On the one hand, through applying the analytical method, the maximum water yield of mine 1 500 m deep below the surface was calculated to be 13 645.17 m3/d; on the other hand, through adopting the numerical method, we obtained the predicted result of 3 816.16 m3/d. Meanwhile, by using the boundary generalization in the above-mentioned two methods, and through a comparative analysis of the actual hydro-geological conditions in this deep-buried mine, which also concerns the advantages and disadvantages of the two methods respectively, this paper draws the conclusion that the analytical method is only applicable in ideal conditions, but numerical method is eligible to be used in complex hydro-geological conditions. Therefore, it is more applicable to employ the numerical method to forecast water yield of deep-buried iron mine in Yanzhou, Shandong.展开更多
During the period spanning the 1970s and1980s, countries in the West African Sahel experienced severe drought. Its impact on agriculture and ecosystems has highlighted the importance of monitoring the Sahelian rainy s...During the period spanning the 1970s and1980s, countries in the West African Sahel experienced severe drought. Its impact on agriculture and ecosystems has highlighted the importance of monitoring the Sahelian rainy season. In Sahelian countries such as Mali, rainfall is the major determinant of crop production. Unfortunately, rainfall is highly variable in time and space. Therefore, this study is conducted to analyze and forecast the impact of climatic parameters on the rain-fed rice yield cultivation in the Office Riz Mopti region. The data were collected from satellite imagery, archived meteorology data, yield and rice characteristics. The study employed Hanning filter to highlight interannual fluctuation, a test of Pettitt and the standardized precipitation index (SPI) to analyze the rainfall variability. Climate change scenarios under the RCP 8.5 scenario (HadGEM-2 ES) and agroclimatic (Cropwat) model are carried out to simulate the future climate and its impact on rice yields. The results of satellite image classifications of 1986 and 2016 show an increase of rice fields with a noticeable decrease of bare soil. The analysis of the SPI reveals that over the 30 years considered, 56.67% of the rainy seasons were dry (1986-2006) and 43.33% were wet (2007-2015). The modelling approach is applied over 1986-2006 and 2007-2015 periods—considered as typical dry and rainy years—and applied over the future, with forecasts of climate change scenarios in 2034. The results show a decrease in potential yield during dry and slightly wet years. The yields of rain-fed rice will be generally low between 2016 and 2027. Deficits are observed over the entire study area, in comparison with the potential yield. Thus, this situation could expose the population to food insecurity.展开更多
Mathematical models have been widely employed for the simulation of growth dynamics of annual crops,thereby performing yield prediction,but not for fruit tree species such as jujube tree(Zizyphus jujuba).The objective...Mathematical models have been widely employed for the simulation of growth dynamics of annual crops,thereby performing yield prediction,but not for fruit tree species such as jujube tree(Zizyphus jujuba).The objectives of this study were to investigate the potential use of a modified WOFOST model for predicting jujube yield by introducing tree age as a key parameter.The model was established using data collected from dedicated field experiments performed in 2016-2018.Simulated growth dynamics of dry weights of leaves,stems,fruits,total biomass and leaf area index(LAI) agreed well with measured values,showing root mean square error(RMSE) values of 0.143,0.333,0.366,0.624 t ha^-1 and 0.19,and R2 values of 0.947,0.976,0.985,0.986 and 0.95,respectively.Simulated phenological development stages for emergence,anthesis and maturity were 2,3 and 3 days earlier than the observed values,respectively.In addition,in order to predict the yields of trees with different ages,the weight of new organs(initial buds and roots) in each growing season was introduced as the initial total dry weight(TDWI),which was calculated as averaged,fitted and optimized values of trees with the same age.The results showed the evolution of the simulated LAI and yields profiled in response to the changes in TDWI.The modelling performance was significantly improved when it considered TDWI integrated with tree age,showing good global(R2≥0.856,RMSE≤0.68 t ha^-1) and local accuracies(mean R2≥0.43,RMSE≤0.70 t ha^-1).Furthermore,the optimized TDWI exhibited the highest precision,with globally validated R2 of 0.891 and RMSE of 0.591 t ha^-1,and local mean R2 of 0.57 and RMSE of 0.66 t ha^-1,respectively.The proposed model was not only verified with the confidence to accurately predict yields of jujube,but it can also provide a fundamental strategy for simulating the growth of other fruit trees.展开更多
Quantifying sugarcane production is critical for a wide range of applications, including crop management and decision making processes such as harvesting, storage, and forward selling. This study explored a novel mode...Quantifying sugarcane production is critical for a wide range of applications, including crop management and decision making processes such as harvesting, storage, and forward selling. This study explored a novel model for predicting sugarcane yield in Bundaberg region from time series Landsat data. From the freely available Landsat archive, 98 cloud free (<40%) Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) images, acquired between November 15th to July 31<sup>st</sup> (2001-2015) were sourced for this study. The images were masked using the field boundary layer vector files of each year and the GNDVI was calculated. An analysis of average green normalized difference vegetation index (GNDVI) values from all sugarcane crops grown within the Bundaberg region over the 15 year period identified the beginning of April as the peak growth stage and, therefore, the optimum time for satellite image based yield forecasting. As the GNDVI is an indicator of crop vigor, the model derived maximum GNDVI was regressed against historical sugarcane yield data, which showed a significant correlation with R<sup>2</sup> = 0.69 and RMSE = 4.2 t/ha. Results showed that the model derived maximum GNDVI from Landsat imagery would be a feasible and a modest technique to predict sugarcane yield in Bundaberg region.展开更多
文摘Using the artificial nerve network′s knowledge, establish the estimate′s mathematics model of the soybean′s yield, and by the model we can increase accuracy of the soybean yield forecast.
基金Supported by Agricultural Poor-helping Monopoly of Graduate University of Chinese Academy of Science (40641002)
文摘Traditional studies on potential yield mainly referred to attainable yield: the maximum yield which could be reached by a crop in a given environment. The new concept of crop yield under average climate conditions was defined in this paper, which was affected by advancement of science and technology. Based on the new concept of crop yield, the time series techniques relying on past yield data was employed to set up a forecasting model. The model was tested by using average grain yields of Liaoning Province in China from 1949 to 2005. The testing combined dynamic n-choosing and micro tendency rectification, and an average forecasting error was 1.24%. In the trend line of yield change, and then a yield turning point might occur, in which case the inflexion model was used to solve the problem of yield turn point.
文摘Remote-sensing data acquired by satellite imageries have a wide scope in agricultural applications owing to their synoptic and repetitive coverage. This study reports the development of an operational spectro-agrometereological yield model for maize crop derived from time series data of SPOT VEGETATION, actual and potential evapotranspiration and rainfall estimate satellite data for the years 2003-2012. Indices of these input data were utilized to validate their strength in explaining grain yield recorded by the Central Statistical Agency through correlation analyses. Crop masking at crop land area was applied and refined using agro-ecological zones suitable for maize. Rainfall estimates and average Normalized Difference Vegetation Index were found highly correlated to maize yield with the former accounting for 85% variation and the latter 80%, respectively. The developed spectro-agrometeorological yield model was successfully validated against the predicted Zone level yields estimated by Central Statistical Agency (r<sup>2</sup> = 0.88, RMSE = 1.405 q·ha<sup>-1</sup> and 21% coefficient of variation). Thus, remote sensing and geographical information system based maize yield forecast improved quality and timelines of the data besides distinguishing yield production levels/areas and making intervention very easy for the decision makers thereby proving the clear potential of spectro-agrometeorological factors for maize yield forecasting, particularly for Ethiopia.
文摘A reliable and accurate forecasting model for crop yields is crucial for effective decision-making in every agricultural sector.Machine learning approaches allow for building such predictive models,but the quality of predictions decreases if data is scarce.In this work,we proposed data-augmentation for wheat yield forecasting in the presence of small data sets of two distinct Provinces in Algeria.We first increased the dimension of each data set by adding more features,and then we augmented the size of the data by merging the two data sets.To assess the effectiveness of data-augmentation approaches,we conducted three sets of experiments based on three data sets:the primary data sets,data sets with additional features and the augmented data sets obtained by merging,using five regression models(Support Vector Regression,Random Forest,Extreme Learning Machine,Artificial Neural Network,Deep Neural Network).To evaluate the models,we used cross-validation;the results showed an overall increase in performance with the augmented data.DNN outperformed the other models for the first Province with a Root Mean Square Error(RMSE)of 0.04 q/ha and R_Squared(R^(2))of 0.96,whereas the Random Forest outperformed the other models for the second Province with RMSE of 0.05 q/ha.
文摘Runoff and sediment yield from an Indian watershed during the monsoon period were forecasted for differ-ent time periods (daily and weekly) using the back propagation artificial neural network (BPANN) modeling technique. The results were compared with those of single- and multi-input linear transfer function models. In BPANN, the maximum value of variable was considered for normalization of input, and a pattern learning algorithm was developed. Input variables in the model were obtained by comparing the response with their respective standard error. The network parsimony was achieved by pruning the network using error sensitiv-ity - weight criterion, and model generalization by cross validation. The performance was evaluated using correlation coefficient (CC), coefficient of efficiency (CE), and root mean square error (RMSE). The single input linear transfer function (SI-LTF) runoff and sediment yield forecasting models were more efficacious than the multi input linear transfer function (MI-LTF) and ANN models.
文摘This paper compares analytical and numerical methods by taking the forecasting of water yield of deep-buried iron mine in Yanzhou, Shandong as an example. Regarding the analytical method, the equation of infinite and bilateral water inflow boundary is used to forecast the water yield, and in the case of numerical simulation, we employed the GMS software to establish a model and further to forecast the water yield. On the one hand, through applying the analytical method, the maximum water yield of mine 1 500 m deep below the surface was calculated to be 13 645.17 m3/d; on the other hand, through adopting the numerical method, we obtained the predicted result of 3 816.16 m3/d. Meanwhile, by using the boundary generalization in the above-mentioned two methods, and through a comparative analysis of the actual hydro-geological conditions in this deep-buried mine, which also concerns the advantages and disadvantages of the two methods respectively, this paper draws the conclusion that the analytical method is only applicable in ideal conditions, but numerical method is eligible to be used in complex hydro-geological conditions. Therefore, it is more applicable to employ the numerical method to forecast water yield of deep-buried iron mine in Yanzhou, Shandong.
文摘During the period spanning the 1970s and1980s, countries in the West African Sahel experienced severe drought. Its impact on agriculture and ecosystems has highlighted the importance of monitoring the Sahelian rainy season. In Sahelian countries such as Mali, rainfall is the major determinant of crop production. Unfortunately, rainfall is highly variable in time and space. Therefore, this study is conducted to analyze and forecast the impact of climatic parameters on the rain-fed rice yield cultivation in the Office Riz Mopti region. The data were collected from satellite imagery, archived meteorology data, yield and rice characteristics. The study employed Hanning filter to highlight interannual fluctuation, a test of Pettitt and the standardized precipitation index (SPI) to analyze the rainfall variability. Climate change scenarios under the RCP 8.5 scenario (HadGEM-2 ES) and agroclimatic (Cropwat) model are carried out to simulate the future climate and its impact on rice yields. The results of satellite image classifications of 1986 and 2016 show an increase of rice fields with a noticeable decrease of bare soil. The analysis of the SPI reveals that over the 30 years considered, 56.67% of the rainy seasons were dry (1986-2006) and 43.33% were wet (2007-2015). The modelling approach is applied over 1986-2006 and 2007-2015 periods—considered as typical dry and rainy years—and applied over the future, with forecasts of climate change scenarios in 2034. The results show a decrease in potential yield during dry and slightly wet years. The yields of rain-fed rice will be generally low between 2016 and 2027. Deficits are observed over the entire study area, in comparison with the potential yield. Thus, this situation could expose the population to food insecurity.
基金supported by the National Natural Science Foundation of China(41561088 and 61501314)the Science&Technology Nova Program of Xinjiang Production and Construction Corps,China(2018CB020)
文摘Mathematical models have been widely employed for the simulation of growth dynamics of annual crops,thereby performing yield prediction,but not for fruit tree species such as jujube tree(Zizyphus jujuba).The objectives of this study were to investigate the potential use of a modified WOFOST model for predicting jujube yield by introducing tree age as a key parameter.The model was established using data collected from dedicated field experiments performed in 2016-2018.Simulated growth dynamics of dry weights of leaves,stems,fruits,total biomass and leaf area index(LAI) agreed well with measured values,showing root mean square error(RMSE) values of 0.143,0.333,0.366,0.624 t ha^-1 and 0.19,and R2 values of 0.947,0.976,0.985,0.986 and 0.95,respectively.Simulated phenological development stages for emergence,anthesis and maturity were 2,3 and 3 days earlier than the observed values,respectively.In addition,in order to predict the yields of trees with different ages,the weight of new organs(initial buds and roots) in each growing season was introduced as the initial total dry weight(TDWI),which was calculated as averaged,fitted and optimized values of trees with the same age.The results showed the evolution of the simulated LAI and yields profiled in response to the changes in TDWI.The modelling performance was significantly improved when it considered TDWI integrated with tree age,showing good global(R2≥0.856,RMSE≤0.68 t ha^-1) and local accuracies(mean R2≥0.43,RMSE≤0.70 t ha^-1).Furthermore,the optimized TDWI exhibited the highest precision,with globally validated R2 of 0.891 and RMSE of 0.591 t ha^-1,and local mean R2 of 0.57 and RMSE of 0.66 t ha^-1,respectively.The proposed model was not only verified with the confidence to accurately predict yields of jujube,but it can also provide a fundamental strategy for simulating the growth of other fruit trees.
文摘Quantifying sugarcane production is critical for a wide range of applications, including crop management and decision making processes such as harvesting, storage, and forward selling. This study explored a novel model for predicting sugarcane yield in Bundaberg region from time series Landsat data. From the freely available Landsat archive, 98 cloud free (<40%) Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) images, acquired between November 15th to July 31<sup>st</sup> (2001-2015) were sourced for this study. The images were masked using the field boundary layer vector files of each year and the GNDVI was calculated. An analysis of average green normalized difference vegetation index (GNDVI) values from all sugarcane crops grown within the Bundaberg region over the 15 year period identified the beginning of April as the peak growth stage and, therefore, the optimum time for satellite image based yield forecasting. As the GNDVI is an indicator of crop vigor, the model derived maximum GNDVI was regressed against historical sugarcane yield data, which showed a significant correlation with R<sup>2</sup> = 0.69 and RMSE = 4.2 t/ha. Results showed that the model derived maximum GNDVI from Landsat imagery would be a feasible and a modest technique to predict sugarcane yield in Bundaberg region.