A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasib...A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasible to prepare this material under stir casting conditions with good dispersion.The microstructure and mechanical properties of the composites prepared by different pretreatment methods were analyzed in detail.The TiB_(2) particles in the Al-TiB_(2)/LA103 composite using the pretreatment process were uniformly distributed in the microstructure due to the formation of highly wettable core-shell units in the melt.Compared with the matrix alloys,the Al-TiB_(2)/LA103 composite exhibited effective strength and elastic modulus improvements while maintaining acceptable elongation.The strengthening effect in the composites was mainly attributed to the strong grain refining effect of TiB2.This work shows a balance of high specific modulus(36.1 GPa·cm^(3)·g^(-1))and elongation(8.4%)with the conventional stir casting path,which is of considerable application value.展开更多
Elastic moduli,e.g.shear modulus G and bulk modulus K,are important parameters of geotechnical materials,which are not only the indices for the evaluation of the deformation ability of soils but also the important bas...Elastic moduli,e.g.shear modulus G and bulk modulus K,are important parameters of geotechnical materials,which are not only the indices for the evaluation of the deformation ability of soils but also the important basic parameters for the development of the constitutive models of geotechnical materials.In this study,a series of triaxial loading-unloading-reloading shear tests and isotropic loading-unloadingreloading tests are conducted to study several typical mechanical properties of coral calcareous sand(CCS),and the void ratio evolution during loading,unloading and reloading.The test results show that the stress-strain curves during multiple unloading processes are almost parallel,and their slopes are much greater than the deformation modulus at the initial stage of loading.The relationship between the confining pressure and the volumetric strain can be defined approximately by a hyperbolic equation under the condition of monotonic loading of confining pressure.Under the condition of confining pressure unloading,the evolution of void ratio is linear in the e-lnp0 plane,and these lines are a series of almost parallel lines if there are multiple processes of unloading.Based on the experimental results,it is found that the modified Hardin formulae for the elastic modulus estimation have a significant deviation from the tested values for CCS.Based on the experimental results,it is proposed that the elastic modulus of soils should be determined by the intersection line of two spatial surfaces in the G/K-e-p’/pa space(pa:atmosphere pressure).“Ye formulation”is further proposed for the estimation of the elastic modulus of CCS.This new estimation formulation for soil elastic modulus would provide a new method to accurately describe the mechanical behavior of granular soils.展开更多
Micro/nano-thin films are widely used in the fields of micro/nano-electromechanical system(MEMS/NEMS)and flexible electronics,and their mechanical properties have an important impact on the stability and reliability o...Micro/nano-thin films are widely used in the fields of micro/nano-electromechanical system(MEMS/NEMS)and flexible electronics,and their mechanical properties have an important impact on the stability and reliability of components.However,accurate characterization of the mechanical properties of thin films still faces challenges due to the complexity of film-substrate structure,and the characterization efficiency of traditional techniques is insufficient.In this paper,a high-throughput determination method of the elastic modulus of thin films is proposed based on the strain variance method,the feasibility of which is analyzed by the finite element method(FEM),and the specific tensile configuration with array-distributed thin films is designed and optimized.Based on the strain difference between the film-substrate region and the uncoated region,the elastic modulus of multiple films is obtained simultaneously,and the influences of film width,spacing,thickness,and distribution on the measurement of elastic modulus are elucidated.The results show that the change in film width has a more obvious effect on the elastic modulus determination than film spacing and thickness,i.e.,the larger the film width is,the closer the calculation results are to the theoretical value,and the change in calculation results tends to be stabilized when the film width increases to a certain length.Specifically,the simultaneous measurement of the elastic modulus of eight metal films on a polyimide(PI)substrate with a length of 110 mm and a width of 30 mm can be realized,and the testing throughput can be further increased with the extension of the substrate length.This study provides an efficient and low-cost method for measuring the elastic modulus of thin films,which is expected to accelerate the development of new thin film materials.展开更多
All-solid-state lithium-sulfur batteries(ASSLSBs) have become one of the most potential candidates for the next-generation high-energy systems due to their intrinsic safety and high theoretical energy density.However,...All-solid-state lithium-sulfur batteries(ASSLSBs) have become one of the most potential candidates for the next-generation high-energy systems due to their intrinsic safety and high theoretical energy density.However, PEO-based ASSLSBs face the dilemma of insufficient Coulombic efficiency and long-term stability caused by the coupling problems of dendrite growth of anode and polysulfide shuttle of cathode. In this work, 1,3,5-trioxane(TOX) is used as a functional additive to design a PEO-based composite solidstate electrolyte(denoted as TOX-CSE), which realizes the stable long-term cycle of an ASSLSB. The results show that TOX can in-situ decompose on the anode to form a composite solid electrolyte interphase(SEI) layer with rich-organic component. It yields a high average modulus of 5.0 GPa, greatly improving the mechanical stability of the SEI layer and thus inhibiting the growth of dendrites. Also,the robust SEI layer can act as a barrier to block the side reaction between polysulfides and lithium metal.As a result, a Li-Li symmetric cell assembled with a TOX-CSE exhibits prolonged cycling stability over 2000 h at 0.2 m A cm^(-2). The ASSLSB also shows a stable cycling performance of 500 cycles at 0.5 C.This work reveals the structure–activity relationship between the mechanical property of interface layer and the battery's cycling stability.展开更多
To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ re...To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ reaction yielded an interconnected microstructure composed of Ti_(2)C particles when the Ti_(2)C content reached 50vol%.With widths of 10 and 230 nm,the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti_(2)C particles.The composites with interconnected microstructure attained superior properties,including E of 174.3 GPa and ultimate flexural strength of 1014 GPa.Compared with that of pure Ti,the E of the composite was increased by 55% due to the high Ti_(2)C content and interconnected microstructure.The outstanding strength resulted from the strong interfacial bonding,load-bearing capacity of interconnected Ti_(2)C particles,and bimodal intraparticle Ti lamellae,which minimized the average crack driving force.Interrupted flexural tests revealed preferential crack initiation along the{001}cleavage plane and grain boundary of Ti_(2)C in the region with the highest tensile stress.In addition,the propagation can be efficiently inhibited by interparticle Ti grains,which prevented the brittle fracture of the composites.展开更多
This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from N...This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from NCHRP Report-547,the model was trained and rigorously tested.Performance metrics,specifically RMSE,MAE,and R2,were employed to assess the model's predictive accuracy,robustness,and generalisability.When benchmarked against well-established models like support vector machines(SVM)and gaussian process regression(GPR),the AHA-boosted model demonstrated enhanced performance.It achieved R2 values of 0.997 in training and 0.974 in testing,using the traditional Witczak NCHRP 1-40D model inputs.Incorporating features such as test temperature,frequency,and asphalt content led to a 1.23%increase in the test R2,signifying an improvement in the model's accuracy.The study also explored feature importance and sensitivity through SHAP and permutation importance plots,highlighting binder complex modulus|G*|as a key predictor.Although the AHA-boosted model shows promise,a slight decrease in R2 from training to testing indicates a need for further validation.Overall,this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete,making it a valuable asset for pavement engineering.展开更多
To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 ...To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages.展开更多
This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines...This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines content and the percentage of fractured coarse aggregates were identified as direct indicators of the resilient modulus susceptibility to changes in water content.The results showed that the percentage of fractured coarse aggregates particles(FR)has a more significant impact on the resilient modulus(Er)of crushed granular materials used in pavement construction than the combined indicator of the fines content and sample volumetrics(nf).Crushed granular materials with a higher percentage of fractured coarse aggregates are relatively insensitive to changes in the degree of saturation,but become more sensitive as the fine fraction porosity decreases.An adjusted model was proposed based on the existing formulation,but considers a complex parameter to describe and adjust the sensitivity of base granular materials to variations in moisture content with respect to fabrication charac-teristics,fines content and volumetric properties.The model shows that the variation of Er values is below10%for fully crushed granular materials.However,it reaches approximately±12%for materials with 75%of crushed coarse aggregates andþ40%and-25%for materials with FR=50%.This model could help select good ag-gregates characteristics and adjust grain-size distribution for environments where significant moisture content variations can occur in the pavement system,such as in the Province of Quebec(Canada).As it is based on pa-rameters that can be easily determined or estimated,it also represents a valuable tool for detailed design and analysis that can consider material characteristics.展开更多
Based on the magnetic interaction energy, using derivative of the magnetic energy density, a model is proposed to compute the magnetic-induced shear modulus of magnetorheological elastomers. Taking into account the in...Based on the magnetic interaction energy, using derivative of the magnetic energy density, a model is proposed to compute the magnetic-induced shear modulus of magnetorheological elastomers. Taking into account the influences of particles in the same chain and the particles in all adjacent chains, the traditional magnetic dipole model of the magnetorheological elastomers is modified. The influence of the ratio of the distance etween adjacent chains to the distance between adjacent particles in a chain on the magnetic induced shear odulus is quantitatively studied. When the ratio is large, the multi-chain model is compatible with the single chain model, but when the ratio is small, the difference of the two models is significant and can not be neglected. Making certain the size of the columns and the distance between adjacent columns, after constructing the computational model of BCT structures, the mechanical property of the magnetorheological elastomers composed of columnar structures is analyzed. Results show that, conventional point dipole model has overrated the magnetic-induced shear modulus of the magnetorheological elastomers. From the point of increasing the magnetic-induced shear modulus, when the particle volume fraction is small, the chain-like structure exhibits better result than the columnar structure, but when the particle volume fraction is large,the columnar structure will be better.展开更多
The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accura...The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.展开更多
The dynamic and static modulus of elasticity (MOE) between bluestained and non-bluestained lumber of Lodgepole pine were tested and analyzed by using three methods of Non-destructive testing (NDT), Portable Ultras...The dynamic and static modulus of elasticity (MOE) between bluestained and non-bluestained lumber of Lodgepole pine were tested and analyzed by using three methods of Non-destructive testing (NDT), Portable Ultrasonic Non-destructive Digital Indicating Testing (Pundit), Metriguard and Fast Fourier Transform (FFT) and the normal bending method. Results showed that the dynamic and static MOE of bluestained wood were higher than those of non-bluestained wood. The significant differences in dynamic MOE and static MOE were found between bulestained and non-bluestained wood, of which, the difference in each of three dynamic MOE (Ep. the ultrasonic wave modulus of elasticity, Ems, the stress wave modulus of elasticity and El, the longitudinal wave modulus of elasticity) between bulestained and non-bluestained wood arrived at the 0.01 significance level, whereas that in the static MOE at the 0.05 significance level. The differences in MOE between bulestained and non-bluestained wood were induced by the variation between sapwood and heartwood and the different densities of bulestained and non-bluestained wood. The correlation between dynamic MOE and static MOE was statistically significant at the 0.01 significance level. Although the dynamic MOE values of Ep, Em, Er were significantly different, there exists a close relationship between them (arriving at the 0.01 correlation level). Comparative analysis among the three techniques indicated that the accurateness of FFT was higher than that of Pundit and Metriguard. Effect of tree knots on MOE was also investigated. Result showed that the dynamic and static MOE gradually decreased with the increase of knot number, indicating that knot number had significant effect on MOE value.展开更多
Gassmann's equations are commonly used for predicting seismic wave velocity in rock physics research.However the input matrix mineral bulk modulus parameters are not accurate,which greatly influences the prediction r...Gassmann's equations are commonly used for predicting seismic wave velocity in rock physics research.However the input matrix mineral bulk modulus parameters are not accurate,which greatly influences the prediction reliability.In this paper,combining the Russell fluid factor with the Gassman-Biot-Geertsma equation and introducing the dry-rock Poisson's ratio,we propose an effective matrix mineral bulk modulus extraction method.This method can adaptively invert the equivalent matrix mineral bulk modulus to apply the Gassmann equation to fluid substitution of complex carbonate reservoirs and increase the fluid prediction reliability.The verification of the actual material fluid substitution also shows that this method is reliable,efficient,and adaptable.展开更多
In order to assess the performance of the embankment soil under various climate conditions during the period of service, the modulus behaviour of an unsaturated compacted soil is evaluated using the constant water con...In order to assess the performance of the embankment soil under various climate conditions during the period of service, the modulus behaviour of an unsaturated compacted soil is evaluated using the constant water content triaxial test. Since the water content measurement method is simple and economical and it is used widely in engineering, the soil suction is replaced by the water content and the relationship between the water content and the modulus is developed. The compacted samples are prepared with different compacted water contents, and samples with a similar water content subjected to drying or wetting procedures prior to the triaxial test are also investigated. The effect of the water content and the confining pressure on the modulus is analyzed. The results show that the modulus decreases with the increase in the water content and a power function can be proposed to quantitatively describe the relationship between the modulus and the water content in the range of the measured water content. The modulus increases with the increase in the confining pressure of the compacted soil. However, the effect of the water content on the modulus is more pronounced than that of the confining pressure. This research can be referenced for the compacted embankment soil assessment in-service period.展开更多
s:A divide- by- 12 8/ 12 9or6 4/ 6 5 dual- modulus prescaler based on new optimized structure and dynam ic circuit technique im plem ented in 0 .2 5 μm CMOS digital technology is described.New optimized structure re...s:A divide- by- 12 8/ 12 9or6 4/ 6 5 dual- modulus prescaler based on new optimized structure and dynam ic circuit technique im plem ented in 0 .2 5 μm CMOS digital technology is described.New optimized structure reduces the propagation delay and has higher operating speed.Based on this structure,an im proved D- flip- flop(DFF) using dynam ic circuit technique is proposed.A prototype is fabricated and the measured results show that this prescaler works well in gigahertz frequency range and consumes only35 m W(including three power- hungry output buffers) when the input frequency is2 .5 GHz and the power supply voltage is2 .5 V.Due to its excellent perform ance,the prescaler could be applied to many RF system s.展开更多
In order to study the dynamic performance of the thermosetting epoxy asphalt mixture(EAM), an experimental program on the dynamic modulus E is conducted. First, E of the EAM under different temperatures and frequenc...In order to study the dynamic performance of the thermosetting epoxy asphalt mixture(EAM), an experimental program on the dynamic modulus E is conducted. First, E of the EAM under different temperatures and frequencies are tested through the simple performance test(SPT), and the effects of temperatures and frequencies on the dynamic modulus of the EAM are analyzed. Secondly, the static modulus of the EAM and the dynamic modulus of other two ordinary mixtures are tested and compared to E of the EAM. Finally the dynamic modulus master curve is constructed using the time-temperature superposition principle. The results show that the E values increase with the increase in the test frequency while on the other hand, the E values decrease with the increase in the test temperature. It also can be seen from the results that the dynamic modulus corresponding to the actual vehicle mode is significantly greater than the static modulus, and the dynamic modulus of the EAM is greater than that of SBS mixtures and the common hot mixed asphalt (HMA). The study results can provide a theoretical basis for the design and mechanical analysis of the steel deck pavement.展开更多
In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specim...In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specimens of human mandibular canine were obtained from 4 adult donors, 16 transverse specimens were made from the sections of cervical margin, midroot and apex using the slow cutting machine. The prepared specimens were tested in different sections (along the longitudinal direction) and different areas (in the circumferential direction). According to the Oliver-Phair theory, the mean values of elastic modulus were calculated foreach area and the differences among them were compared. In the midroot section, the average elastic modulus is ranging from 0. 11 to 0. 23 MPa, the changing range of the cervical margin and apex are from 0. 21 to 0. 53 MPa and 0. 44 to0.62 MPa, respectively. Experimental results indicate that the average elastic modulus in the midroot is lower than that in the cervical margin and apex, and relatively small changes occur among them. However, there is a large change to the elastic modulus value in the cicumferential direction for the PDL.展开更多
AVO forward modeling is based on two-phase medium theory and is considered an effective method for describing reservoir rocks and fluids. However, the method depends on the input matrix mineral bulk modulus and the ra...AVO forward modeling is based on two-phase medium theory and is considered an effective method for describing reservoir rocks and fluids. However, the method depends on the input matrix mineral bulk modulus and the rationality of the two-phase medium model. We used the matrix mineral bulk modulus inversion method and multiple constraints to obtain a two-phase medium model with physical meaning. The proposed method guarantees the reliability of the obtained AVO characteristicsin two-phase media. By the comparative analysis of different lithology of the core sample, the advantages and accuracy of the inversion method can be illustrated. Also, the inversion method can be applied in LH area, and the AVO characteristics can be obtained when the porosity, fluid saturation, and other important lithology parameters are changed. In particular, the reflection coefficient amplitude difference between the fast P wave and S wave as a function of porosity at the same incidence angle, and the difference in the incidence angle threshold can be used to decipher porosity.展开更多
To get the quantitive value of abnormal biological tissues, an inverse algorithm about the Young's modulus based on the boundary extraction and the image registration technologies is proposed. With the known displace...To get the quantitive value of abnormal biological tissues, an inverse algorithm about the Young's modulus based on the boundary extraction and the image registration technologies is proposed. With the known displacements of boundary tissues and the force distribution, the Young's modulus is calculated by constructing the unit system and the inverse finite element method (IFEM). Then a tough range of the modulus for the whole tissue is estimated referring the value obtained before. The improved particle swarm optimizer (PSO) method is adopted to calculate the whole Yong's modulus distribution. The presented algorithm overcomes some limitations in other Young's modulus reconstruction methods and relaxes the displacements and force boundary condition requirements. The repetitious numerical simulation shows that errors in boundary displacement are not very sensitive to the estimation of next process; a final feasible solution is obtained by the improved PSO method which is close to the theoretical values obtained during searching in an extensive range.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51821001 and U2037601)Major Scientific and Technological Inno-vation Projects in Luoyang(No.2201029A)+1 种基金Foundation Strengthening Plan Technical Field Fund(No.2021-JJ-0112)Shanghai Jiao Tong University Student Innovation Prac-tice Program(No.IPP24076).
文摘A novel Mg^(-1)0Li-3Al(wt.%,LA103)matrix composite reinforced by ex situ micron TiB_(2) particles was developed in the present study.The ball milling and cold pressing pretreatment of the reinforcements made it feasible to prepare this material under stir casting conditions with good dispersion.The microstructure and mechanical properties of the composites prepared by different pretreatment methods were analyzed in detail.The TiB_(2) particles in the Al-TiB_(2)/LA103 composite using the pretreatment process were uniformly distributed in the microstructure due to the formation of highly wettable core-shell units in the melt.Compared with the matrix alloys,the Al-TiB_(2)/LA103 composite exhibited effective strength and elastic modulus improvements while maintaining acceptable elongation.The strengthening effect in the composites was mainly attributed to the strong grain refining effect of TiB2.This work shows a balance of high specific modulus(36.1 GPa·cm^(3)·g^(-1))and elongation(8.4%)with the conventional stir casting path,which is of considerable application value.
基金Professor Jianhong Ye is grateful for the funding support from the National Key Research and Development Program of China(Grant No.2022YFC3102402).
文摘Elastic moduli,e.g.shear modulus G and bulk modulus K,are important parameters of geotechnical materials,which are not only the indices for the evaluation of the deformation ability of soils but also the important basic parameters for the development of the constitutive models of geotechnical materials.In this study,a series of triaxial loading-unloading-reloading shear tests and isotropic loading-unloadingreloading tests are conducted to study several typical mechanical properties of coral calcareous sand(CCS),and the void ratio evolution during loading,unloading and reloading.The test results show that the stress-strain curves during multiple unloading processes are almost parallel,and their slopes are much greater than the deformation modulus at the initial stage of loading.The relationship between the confining pressure and the volumetric strain can be defined approximately by a hyperbolic equation under the condition of monotonic loading of confining pressure.Under the condition of confining pressure unloading,the evolution of void ratio is linear in the e-lnp0 plane,and these lines are a series of almost parallel lines if there are multiple processes of unloading.Based on the experimental results,it is found that the modified Hardin formulae for the elastic modulus estimation have a significant deviation from the tested values for CCS.Based on the experimental results,it is proposed that the elastic modulus of soils should be determined by the intersection line of two spatial surfaces in the G/K-e-p’/pa space(pa:atmosphere pressure).“Ye formulation”is further proposed for the estimation of the elastic modulus of CCS.This new estimation formulation for soil elastic modulus would provide a new method to accurately describe the mechanical behavior of granular soils.
文摘Micro/nano-thin films are widely used in the fields of micro/nano-electromechanical system(MEMS/NEMS)and flexible electronics,and their mechanical properties have an important impact on the stability and reliability of components.However,accurate characterization of the mechanical properties of thin films still faces challenges due to the complexity of film-substrate structure,and the characterization efficiency of traditional techniques is insufficient.In this paper,a high-throughput determination method of the elastic modulus of thin films is proposed based on the strain variance method,the feasibility of which is analyzed by the finite element method(FEM),and the specific tensile configuration with array-distributed thin films is designed and optimized.Based on the strain difference between the film-substrate region and the uncoated region,the elastic modulus of multiple films is obtained simultaneously,and the influences of film width,spacing,thickness,and distribution on the measurement of elastic modulus are elucidated.The results show that the change in film width has a more obvious effect on the elastic modulus determination than film spacing and thickness,i.e.,the larger the film width is,the closer the calculation results are to the theoretical value,and the change in calculation results tends to be stabilized when the film width increases to a certain length.Specifically,the simultaneous measurement of the elastic modulus of eight metal films on a polyimide(PI)substrate with a length of 110 mm and a width of 30 mm can be realized,and the testing throughput can be further increased with the extension of the substrate length.This study provides an efficient and low-cost method for measuring the elastic modulus of thin films,which is expected to accelerate the development of new thin film materials.
基金National Natural Science Foundation of China (Grant Nos. 22178125 and 21875071)。
文摘All-solid-state lithium-sulfur batteries(ASSLSBs) have become one of the most potential candidates for the next-generation high-energy systems due to their intrinsic safety and high theoretical energy density.However, PEO-based ASSLSBs face the dilemma of insufficient Coulombic efficiency and long-term stability caused by the coupling problems of dendrite growth of anode and polysulfide shuttle of cathode. In this work, 1,3,5-trioxane(TOX) is used as a functional additive to design a PEO-based composite solidstate electrolyte(denoted as TOX-CSE), which realizes the stable long-term cycle of an ASSLSB. The results show that TOX can in-situ decompose on the anode to form a composite solid electrolyte interphase(SEI) layer with rich-organic component. It yields a high average modulus of 5.0 GPa, greatly improving the mechanical stability of the SEI layer and thus inhibiting the growth of dendrites. Also,the robust SEI layer can act as a barrier to block the side reaction between polysulfides and lithium metal.As a result, a Li-Li symmetric cell assembled with a TOX-CSE exhibits prolonged cycling stability over 2000 h at 0.2 m A cm^(-2). The ASSLSB also shows a stable cycling performance of 500 cycles at 0.5 C.This work reveals the structure–activity relationship between the mechanical property of interface layer and the battery's cycling stability.
基金financially supported by the National Key R&D Program of China(No.2021YFB3701203)the National Natural Science Foundation of China(Nos.U22A20113,52201116,52071116,and 52261135543)+1 种基金Heilongjiang Touyan Team ProgramChina Postdoctoral Science Foundation(No.2022M710939).
文摘To enhance the Young’s modulus(E)and strength of titanium alloys,we designed titanium matrix composites with intercon-nected microstructure based on the Hashin-Shtrikman theory.According to the results,the in-situ reaction yielded an interconnected microstructure composed of Ti_(2)C particles when the Ti_(2)C content reached 50vol%.With widths of 10 and 230 nm,the intraparticle Ti lamellae in the prepared composite exhibited a bimodal size distribution due to precipitation and the unreacted Ti phase within the grown Ti_(2)C particles.The composites with interconnected microstructure attained superior properties,including E of 174.3 GPa and ultimate flexural strength of 1014 GPa.Compared with that of pure Ti,the E of the composite was increased by 55% due to the high Ti_(2)C content and interconnected microstructure.The outstanding strength resulted from the strong interfacial bonding,load-bearing capacity of interconnected Ti_(2)C particles,and bimodal intraparticle Ti lamellae,which minimized the average crack driving force.Interrupted flexural tests revealed preferential crack initiation along the{001}cleavage plane and grain boundary of Ti_(2)C in the region with the highest tensile stress.In addition,the propagation can be efficiently inhibited by interparticle Ti grains,which prevented the brittle fracture of the composites.
文摘This study introduces and evaluates a novel artificial hummingbird algorithm-optimised boosted tree(AHAboosted)model for predicting the dynamic modulus(E*)of hot mix asphalt concrete.Using a substantial dataset from NCHRP Report-547,the model was trained and rigorously tested.Performance metrics,specifically RMSE,MAE,and R2,were employed to assess the model's predictive accuracy,robustness,and generalisability.When benchmarked against well-established models like support vector machines(SVM)and gaussian process regression(GPR),the AHA-boosted model demonstrated enhanced performance.It achieved R2 values of 0.997 in training and 0.974 in testing,using the traditional Witczak NCHRP 1-40D model inputs.Incorporating features such as test temperature,frequency,and asphalt content led to a 1.23%increase in the test R2,signifying an improvement in the model's accuracy.The study also explored feature importance and sensitivity through SHAP and permutation importance plots,highlighting binder complex modulus|G*|as a key predictor.Although the AHA-boosted model shows promise,a slight decrease in R2 from training to testing indicates a need for further validation.Overall,this study confirms the AHA-boosted model as a highly accurate and robust tool for predicting the dynamic modulus of hot mix asphalt concrete,making it a valuable asset for pavement engineering.
基金supported by the National Key R&D Program of China (Grant No.2022YFC3003401)the National Natural Science Foundation of China (Grant Nos.42041006 and 42377137).
文摘To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages.
文摘This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines content and the percentage of fractured coarse aggregates were identified as direct indicators of the resilient modulus susceptibility to changes in water content.The results showed that the percentage of fractured coarse aggregates particles(FR)has a more significant impact on the resilient modulus(Er)of crushed granular materials used in pavement construction than the combined indicator of the fines content and sample volumetrics(nf).Crushed granular materials with a higher percentage of fractured coarse aggregates are relatively insensitive to changes in the degree of saturation,but become more sensitive as the fine fraction porosity decreases.An adjusted model was proposed based on the existing formulation,but considers a complex parameter to describe and adjust the sensitivity of base granular materials to variations in moisture content with respect to fabrication charac-teristics,fines content and volumetric properties.The model shows that the variation of Er values is below10%for fully crushed granular materials.However,it reaches approximately±12%for materials with 75%of crushed coarse aggregates andþ40%and-25%for materials with FR=50%.This model could help select good ag-gregates characteristics and adjust grain-size distribution for environments where significant moisture content variations can occur in the pavement system,such as in the Province of Quebec(Canada).As it is based on pa-rameters that can be easily determined or estimated,it also represents a valuable tool for detailed design and analysis that can consider material characteristics.
文摘Based on the magnetic interaction energy, using derivative of the magnetic energy density, a model is proposed to compute the magnetic-induced shear modulus of magnetorheological elastomers. Taking into account the influences of particles in the same chain and the particles in all adjacent chains, the traditional magnetic dipole model of the magnetorheological elastomers is modified. The influence of the ratio of the distance etween adjacent chains to the distance between adjacent particles in a chain on the magnetic induced shear odulus is quantitatively studied. When the ratio is large, the multi-chain model is compatible with the single chain model, but when the ratio is small, the difference of the two models is significant and can not be neglected. Making certain the size of the columns and the distance between adjacent columns, after constructing the computational model of BCT structures, the mechanical property of the magnetorheological elastomers composed of columnar structures is analyzed. Results show that, conventional point dipole model has overrated the magnetic-induced shear modulus of the magnetorheological elastomers. From the point of increasing the magnetic-induced shear modulus, when the particle volume fraction is small, the chain-like structure exhibits better result than the columnar structure, but when the particle volume fraction is large,the columnar structure will be better.
基金supported by the National Nature Science Foundation of China (Grant Noss 40739907 and 40774064)National Science and Technology Major Project (Grant No. 2008ZX05025-003)
文摘The rock matrix bulk modulus or its inverse, the compressive coefficient, is an important input parameter for fluid substitution by the Biot-Gassmann equation in reservoir prediction. However, it is not easy to accurately estimate the bulk modulus by using conventional methods. In this paper, we present a new linear regression equation for calculating the parameter. In order to get this equation, we first derive a simplified Gassmann equation by using a reasonable assumption in which the compressive coefficient of the saturated pore fluid is much greater than the rock matrix, and, second, we use the Eshelby- Walsh relation to replace the equivalent modulus of a dry rock in the Gassmann equation. Results from the rock physics analysis of rock sample from a carbonate area show that rock matrix compressive coefficients calculated with water-saturated and dry rock samples using the linear regression method are very close (their error is less than 1%). This means the new method is accurate and reliable.
基金This paper was supported by "Wood-inorganic Res-toration Material" in "Technique Introduction and Innovation of Bio-macromolecule New Material" of Introducing Overseas Advanced Forest Technology Innovation Program of China ("948" Innovation Pro-ject, Number: 2006-4-C03)
文摘The dynamic and static modulus of elasticity (MOE) between bluestained and non-bluestained lumber of Lodgepole pine were tested and analyzed by using three methods of Non-destructive testing (NDT), Portable Ultrasonic Non-destructive Digital Indicating Testing (Pundit), Metriguard and Fast Fourier Transform (FFT) and the normal bending method. Results showed that the dynamic and static MOE of bluestained wood were higher than those of non-bluestained wood. The significant differences in dynamic MOE and static MOE were found between bulestained and non-bluestained wood, of which, the difference in each of three dynamic MOE (Ep. the ultrasonic wave modulus of elasticity, Ems, the stress wave modulus of elasticity and El, the longitudinal wave modulus of elasticity) between bulestained and non-bluestained wood arrived at the 0.01 significance level, whereas that in the static MOE at the 0.05 significance level. The differences in MOE between bulestained and non-bluestained wood were induced by the variation between sapwood and heartwood and the different densities of bulestained and non-bluestained wood. The correlation between dynamic MOE and static MOE was statistically significant at the 0.01 significance level. Although the dynamic MOE values of Ep, Em, Er were significantly different, there exists a close relationship between them (arriving at the 0.01 correlation level). Comparative analysis among the three techniques indicated that the accurateness of FFT was higher than that of Pundit and Metriguard. Effect of tree knots on MOE was also investigated. Result showed that the dynamic and static MOE gradually decreased with the increase of knot number, indicating that knot number had significant effect on MOE value.
基金sponsored by National Natural Science Foundation of China(Grant No.40904035)
文摘Gassmann's equations are commonly used for predicting seismic wave velocity in rock physics research.However the input matrix mineral bulk modulus parameters are not accurate,which greatly influences the prediction reliability.In this paper,combining the Russell fluid factor with the Gassman-Biot-Geertsma equation and introducing the dry-rock Poisson's ratio,we propose an effective matrix mineral bulk modulus extraction method.This method can adaptively invert the equivalent matrix mineral bulk modulus to apply the Gassmann equation to fluid substitution of complex carbonate reservoirs and increase the fluid prediction reliability.The verification of the actual material fluid substitution also shows that this method is reliable,efficient,and adaptable.
基金The Natural Science Foundation of Jiangsu Province(No. BK2011618)
文摘In order to assess the performance of the embankment soil under various climate conditions during the period of service, the modulus behaviour of an unsaturated compacted soil is evaluated using the constant water content triaxial test. Since the water content measurement method is simple and economical and it is used widely in engineering, the soil suction is replaced by the water content and the relationship between the water content and the modulus is developed. The compacted samples are prepared with different compacted water contents, and samples with a similar water content subjected to drying or wetting procedures prior to the triaxial test are also investigated. The effect of the water content and the confining pressure on the modulus is analyzed. The results show that the modulus decreases with the increase in the water content and a power function can be proposed to quantitatively describe the relationship between the modulus and the water content in the range of the measured water content. The modulus increases with the increase in the confining pressure of the compacted soil. However, the effect of the water content on the modulus is more pronounced than that of the confining pressure. This research can be referenced for the compacted embankment soil assessment in-service period.
文摘s:A divide- by- 12 8/ 12 9or6 4/ 6 5 dual- modulus prescaler based on new optimized structure and dynam ic circuit technique im plem ented in 0 .2 5 μm CMOS digital technology is described.New optimized structure reduces the propagation delay and has higher operating speed.Based on this structure,an im proved D- flip- flop(DFF) using dynam ic circuit technique is proposed.A prototype is fabricated and the measured results show that this prescaler works well in gigahertz frequency range and consumes only35 m W(including three power- hungry output buffers) when the input frequency is2 .5 GHz and the power supply voltage is2 .5 V.Due to its excellent perform ance,the prescaler could be applied to many RF system s.
基金Program for New Century Excellent Talents in University (No.NCET-08-0118)Specialized Research Fund for the Doctoral Program of Higher Education(No.20090092110049)
文摘In order to study the dynamic performance of the thermosetting epoxy asphalt mixture(EAM), an experimental program on the dynamic modulus E is conducted. First, E of the EAM under different temperatures and frequencies are tested through the simple performance test(SPT), and the effects of temperatures and frequencies on the dynamic modulus of the EAM are analyzed. Secondly, the static modulus of the EAM and the dynamic modulus of other two ordinary mixtures are tested and compared to E of the EAM. Finally the dynamic modulus master curve is constructed using the time-temperature superposition principle. The results show that the E values increase with the increase in the test frequency while on the other hand, the E values decrease with the increase in the test temperature. It also can be seen from the results that the dynamic modulus corresponding to the actual vehicle mode is significantly greater than the static modulus, and the dynamic modulus of the EAM is greater than that of SBS mixtures and the common hot mixed asphalt (HMA). The study results can provide a theoretical basis for the design and mechanical analysis of the steel deck pavement.
基金The National Natural Science Foundation of Chin(No.51305208)
文摘In order to investigate the material properties ofperiodontal ligament ( PDL) in different locations, the nanoindentation method is used to survey the elastic modulus of the PDL at different levels. Cadaveric specimens of human mandibular canine were obtained from 4 adult donors, 16 transverse specimens were made from the sections of cervical margin, midroot and apex using the slow cutting machine. The prepared specimens were tested in different sections (along the longitudinal direction) and different areas (in the circumferential direction). According to the Oliver-Phair theory, the mean values of elastic modulus were calculated foreach area and the differences among them were compared. In the midroot section, the average elastic modulus is ranging from 0. 11 to 0. 23 MPa, the changing range of the cervical margin and apex are from 0. 21 to 0. 53 MPa and 0. 44 to0.62 MPa, respectively. Experimental results indicate that the average elastic modulus in the midroot is lower than that in the cervical margin and apex, and relatively small changes occur among them. However, there is a large change to the elastic modulus value in the cicumferential direction for the PDL.
基金supported by the National Natural Science Foundation of China(Grant Nos.41404101,41174114,41274130,and 41404102)
文摘AVO forward modeling is based on two-phase medium theory and is considered an effective method for describing reservoir rocks and fluids. However, the method depends on the input matrix mineral bulk modulus and the rationality of the two-phase medium model. We used the matrix mineral bulk modulus inversion method and multiple constraints to obtain a two-phase medium model with physical meaning. The proposed method guarantees the reliability of the obtained AVO characteristicsin two-phase media. By the comparative analysis of different lithology of the core sample, the advantages and accuracy of the inversion method can be illustrated. Also, the inversion method can be applied in LH area, and the AVO characteristics can be obtained when the porosity, fluid saturation, and other important lithology parameters are changed. In particular, the reflection coefficient amplitude difference between the fast P wave and S wave as a function of porosity at the same incidence angle, and the difference in the incidence angle threshold can be used to decipher porosity.
文摘To get the quantitive value of abnormal biological tissues, an inverse algorithm about the Young's modulus based on the boundary extraction and the image registration technologies is proposed. With the known displacements of boundary tissues and the force distribution, the Young's modulus is calculated by constructing the unit system and the inverse finite element method (IFEM). Then a tough range of the modulus for the whole tissue is estimated referring the value obtained before. The improved particle swarm optimizer (PSO) method is adopted to calculate the whole Yong's modulus distribution. The presented algorithm overcomes some limitations in other Young's modulus reconstruction methods and relaxes the displacements and force boundary condition requirements. The repetitious numerical simulation shows that errors in boundary displacement are not very sensitive to the estimation of next process; a final feasible solution is obtained by the improved PSO method which is close to the theoretical values obtained during searching in an extensive range.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.