We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal a...We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.展开更多
By using a loop mirror filter, a novel wavelength-tunable single-frequency ytterbium-doped fiber laser is developed to select single longitudinal modes in a linear cavity. The output wavelength could be tuned 2.4 nm i...By using a loop mirror filter, a novel wavelength-tunable single-frequency ytterbium-doped fiber laser is developed to select single longitudinal modes in a linear cavity. The output wavelength could be tuned 2.4 nm intervals range from 1063.3 to 1065.Tnrn with the temperature change of the fiber Bragg grating. The maximum output power could reach 32 m W while the pump power increases to 120 m W. The corresponding optical-to-optical conversion efficiency is 26.7% and the slope efficiency is 33.9%, respectively. The output power fluctuation is below 2%, and its highest signal-to-noise ratio is 60 dB.展开更多
We demonstrate a kW continuous-wave ytterbium-doped all-fiber laser oscillator with M1 domestic fiber compo- nents: a 7× I fused fiber bundle combiner, a fiber Bragg grating and a double-clad gain fiber. The osc...We demonstrate a kW continuous-wave ytterbium-doped all-fiber laser oscillator with M1 domestic fiber compo- nents: a 7× I fused fiber bundle combiner, a fiber Bragg grating and a double-clad gain fiber. The oscillator operates at 1079.48nrn with 80.94% slope efficiency and shows no limit of temperature and nonlinear effects. These indicate that the passive fiber components and the gain fiber are all qualified for the high power environ- ment. No evidence of the signal power roll-over shows that this oscillator possesses the capacity to higher output with available pump power.展开更多
With the rapid development of ytterbium-doped fiber lasers, some obtrusive limitations on power scaling appeared. In order to avoid these problems, a scheme called tandem pumping is introduced into the fiber laser fie...With the rapid development of ytterbium-doped fiber lasers, some obtrusive limitations on power scaling appeared. In order to avoid these problems, a scheme called tandem pumping is introduced into the fiber laser field. In this paper, the optical properties of an ytterbium-doped tandem-pumped fiber oscillator are presented. According to the oscillator profile, the proper gain fiber type and pump wavelength range are picked out, under the comprehensive consideration of laser conversion efficiency and beam quality. In addition, the photodarkening performances of tandem pumping lasers and conventional ones are compared based on practical application, with all possible impact parameters taken into account. Moreover, an all-fibered tandem-pumped oscillator centered at 1079.5 nm is built, in the way of clad pumping by a 1030-nm fiber laser. The laser power of the oscillator reaches 7 W, with an opto-optic efficiency of 82.4%.展开更多
We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-...We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-NPs into a polyvinyl alcohol (PVA) as a host polymer, and then inserted between two fiber ferrules to act as a saturable absorber (SA). By incorporating the Al2O3-PVA SA into the laser cavity, a stable dual-wavelength pulse output centered at 1050 and 1060.7nm is observed at threshold pump power of 80mW. As the pump power is gradually increased from 80 to 300mW, the repetition rate of the generated pulse increases from 16.23 to 59 kHz, while the pulse width decreases from 19 to 6μs. To the best of our knowledge, this is the first demonstration for this type of SA operating in the 1 μm region.展开更多
We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power...We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power amplifier system. The cascaded SRS is achieved by using a long passive fiber pumped by a pulsed fiber laser cen: tered at wavelength 1064 nm. The amplified spontaneous emission during the amplification process is efficiently suppressed by cutting the length of the passive fiber and by using a double-clad ytterbium-doped fiber amplifier. The generated broadband spectrum spans from 960nm to 1700nm with maximum average output 13.6 W and average spectral power density approximately 17. 7 mW/nm.展开更多
A 2×3 kW-level bidirectional output fiber oscillator is realized by combining the specially designed spindle-shaped ytterbium-doped fiber,non-wavelength-stabilized 976-nm LDs,and grating bandwidth optimization to...A 2×3 kW-level bidirectional output fiber oscillator is realized by combining the specially designed spindle-shaped ytterbium-doped fiber,non-wavelength-stabilized 976-nm LDs,and grating bandwidth optimization to balance transverse mode instability and stimulated Raman scattering.The maximum output powers at both ends are 3265 and 2840 W,respectively,with a total efficiency of 73.2%.The M^(2) factors of the lasers at both ends are about 1.98 and 2.38,respectively.The beam profile at both ends shows that a bidirectional output annular beam fiber oscillator has been realized,which has great potential in practical applications.展开更多
Power scaling based on traditional ytterbium-doped fibers(YDFs)is limited by optical nonlinear effects and transverse mode instability(TMI)in high-power fiber lasers.Here,we propose a novel long tapered fiber with a c...Power scaling based on traditional ytterbium-doped fibers(YDFs)is limited by optical nonlinear effects and transverse mode instability(TMI)in high-power fiber lasers.Here,we propose a novel long tapered fiber with a constant cladding and tapered core(CCTC)along its axis direction.The tapered-core region of the fiber is designed to enhance the stimulated Raman scattering(SRS)threshold and suppress higher-order mode resonance in the laser cavity.The CCTC YDF was fabricated successfully with a modified chemical vapor deposition(MCVD)method combined with solution doping technology,which has a cladding diameter of 400µm and a varying core with a diameter of~24μm at both ends and~31μm in the middle.To test the performance of the CCTC fiber during high-power operation,an all-fiber laser oscillator based on a CCTC YDF was investigated experimentally.As a result,a maximum output power of 3.42 kW was achieved with an optical-to-optical efficiency of 55.2%,although the TMI effect was observed at an output power of~3.12 kW.The measured beam quality(M^(2)factor)was~1.7,and no sign of the Raman component was observed in the spectrum.We believe that CCTC YDF has great potential to simultaneously mitigate the SRS and TMI effects,and further power scaling is promising by optimizing the structure of the YDF.展开更多
A compact saturable absorber mirror(SAM) based on few-layer molybdenum disulfide(MoS2) nanoplatelets was fabricated and successfully used as an efficient saturable absorber(SA) for the passively Q-switched solid...A compact saturable absorber mirror(SAM) based on few-layer molybdenum disulfide(MoS2) nanoplatelets was fabricated and successfully used as an efficient saturable absorber(SA) for the passively Q-switched solid-state laser at 1 μm wavelength. Pulses as short as 182 ns were obtained from a ytterbium-doped(Yb:LGGG) bulk laser Q-switched by the MoS2 SAM, which we believe to be the shortest one ever achieved from the MoS2 SAs-based Q-switched bulk lasers. A maximum average output power of 0.6 W was obtained with a slope efficiency of 24%,corresponding to single pulse energy up to 1.8 μJ. In addition, the simultaneous dual-wavelength Q-switching at 1025.2 and 1028.1 nm has been successfully achieved. The results indicate the promising potential of few-layer MoS2 nanoplatelets as nonlinear optical switches for achieving efficient pulsed bulk lasers.展开更多
The potential of bulk-like WTe2 particles for the realization of a passive Q-switch operating at the 1 μm wavelength was investigated. The WTe2 particles were prepared using a simple mechanical exfoliation method tog...The potential of bulk-like WTe2 particles for the realization of a passive Q-switch operating at the 1 μm wavelength was investigated. The WTe2 particles were prepared using a simple mechanical exfoliation method together with Scotch tape. By attaching bulk-like WTe2 particles, which remained on the top of the sticky surface of a small segment of the Scotch tape, to the flat side of a side-polished fiber, a saturable absorber(SA) was readily implemented. A strong saturable absorption was then readily obtained through an evanescent field interaction with the WTe2 particles. The modulation depth of the prepared SA was measured as ~2.18% at 1.03 μm. By incorporating the proposed SA into an all-fiberized ytterbium-doped fiber ring cavity, stable Qswitched pulses were readily achieved.展开更多
A large-mode-area(LMA) ytterbium-doped photonic crystal fiber(PCF) with core NA of 0.034 and core diameter of 50 μm was made by the stack-and-draw technique. The core is formed by Yb3+/Al3+/F-/P5+ co-doped silica...A large-mode-area(LMA) ytterbium-doped photonic crystal fiber(PCF) with core NA of 0.034 and core diameter of 50 μm was made by the stack-and-draw technique. The core is formed by Yb3+/Al3+/F-/P5+ co-doped silica glass containing 0.09 mol% Yb2O3 with an absorption coefficient at 976 nm up to 3.2 d B/m. The core glass with homogeneous distribution of Yb3+ ions and refractive index difference of 4 × 10-4 compared with pure silica was prepared by the sol-gel method and heat homogenization at 2000°C. Laser power amplification of this LMA PCF was studied using a seed source of 21 ps pulse duration and 48.7 MHz repetition rate at 1030 nm wavelength. With pump power of 520 W, a maximum 272 W(266 k W peak power) quasi-single-mode laser output with M2 of 2.2 was achieved in a 4.7 m fiber length bent at a diameter of 47 cm with slope efficiency of 52%, and no obvious mode instability, stimulated Raman scattering, or thermal damage on the end facet of the fiber were observed.展开更多
A tunable passively Q-switched ytterbium-doped fiber laser using few-layer gallium selenide(GaSe) as a saturable absorber(SA) is demonstrated.The few-layer GaSe SA,which is fabricated by the mechanical exfoliation...A tunable passively Q-switched ytterbium-doped fiber laser using few-layer gallium selenide(GaSe) as a saturable absorber(SA) is demonstrated.The few-layer GaSe SA,which is fabricated by the mechanical exfoliation method,is able to generate a Q-switched fiber laser that has a maximum repetition rate of 92.6 kHz and a minimum pulsed width of 2.3 μs.The highest pulse energy exhibited by the generated pulse is 18.8 nJ with a signal to noise ratio of ~40 dB.The tunability of the proposed laser covers from 1042 to 1082 nm,giving a tuning range of 40 nm.展开更多
A stable mode-locked laser was demonstrated using a newly developed zinc phthalocyanine(ZnPc)thin film as passive saturable absorber(SA)in ytterbium-doped fiber laser(YDFL).The ZnPc thin film was obtained using a cast...A stable mode-locked laser was demonstrated using a newly developed zinc phthalocyanine(ZnPc)thin film as passive saturable absorber(SA)in ytterbium-doped fiber laser(YDFL).The ZnPc thin film was obtained using a casting method and then inserted between the two fiber ferrules of a YDFL ring cavity to generate mode-locked pulses.The resulting pulsed laser operated at a wavelength of 1034.5 nm having a repetition rate of 3.3 MHz.At pump power of 277 mW,the maximum output power and pulse energy are achieved at 4.92 mW and 1.36 nJ,respectively.ZnPc has a high chemical and photochemical stability,and its significance for use as a potential SA in a mode-locked laser is reported in this work.展开更多
A method for optimizing the spectral distortion of an ultrafast pulse in a polarization-maintaining picosecond linear-cavity fiber laser with a one-stage fiber amplifier is proposed and demonstrated. The mechanism of ...A method for optimizing the spectral distortion of an ultrafast pulse in a polarization-maintaining picosecond linear-cavity fiber laser with a one-stage fiber amplifier is proposed and demonstrated. The mechanism of control of the spectral distortion in the fiber system has been investigated. The experimental and theoretical results illustrate that the filtering effect of a fiber Bragg grating can effectively decrease the spectral oscillatory distortion accumulated by self-phase modulation. Injected into a Nd:YAG regenerative amplifier, the ultrafast pulse could produce high pulse energy of 1.2 mJ at a repetition rate of 1 kHz.展开更多
Nd/Yb-co-doped YAG transparent ceramic nano-powder was prepared by a sol-gel combustion method.The structure,morphology and properties were characterized by thermogravimetric-differential thermal analysis,X-ray diffra...Nd/Yb-co-doped YAG transparent ceramic nano-powder was prepared by a sol-gel combustion method.The structure,morphology and properties were characterized by thermogravimetric-differential thermal analysis,X-ray diffraction,transmission electron microscopy,infrared spectroscopy,absorption analysis and fluorescence spectroscopy,respectively.The results show that the mass loss of the powder calcinated at 900 ℃ for 3 h is 49.56%.A well-crystallized Nd/Yb:YAG nano-powder with the superior sintering performance and high purity is obtained,and the morphology of the particles with the average diameter in the range of 60-100 runs appears regular.The nano-powder exhibits an intense absorption at 808 nm,corresponding to the 4I/9/2-4F7/2 transition of Nd^(^(3+) ions,which is suitable to absorb the wavelength of 808 nm from a laser diode source.The emission peak at 1046 nm of the Nd/Yb:YAG powder is more intense than that of Nd^(^(3+):YAG powder.It is indicated that the energy absorbed by Yb^(^(3+) ions from the laser diode source can be transmitted to Nd^(^(3+) ions based on the cross relaxation process of[(4F3/2)Nd,(2F7/2)Yb]-[(479/2)Nd,(2F5/2)Yb].展开更多
Silicon carbide particle reinforced aluminum matrix composites(SiCp/Al composites)are widely used in aviation,aerospace and electronic package.However,low machining efficiency,severe tool wear and poor surface quality...Silicon carbide particle reinforced aluminum matrix composites(SiCp/Al composites)are widely used in aviation,aerospace and electronic package.However,low machining efficiency,severe tool wear and poor surface quality are severe during the machining of SiCp/Al composites.Laser-induced oxidation is capable to improve the machinability of SiCp/Al composites.The material response of 55%(volume fraction)SiCp/Al composites induced by a nanosecond pulsed laser is studied.A metamorphic layer which is composed of an oxide layer and sub-layer is produced.The effects of reaction surrounding and laser average power on the microstructure and thickness of the oxide layer and sub-layer are investigated.Experimental results show that:A thicker oxide layer and a sub-layer are formed in an oxygen-rich atmosphere.The oxides are mainly composed of 2Al2O3·SiO2(mullite).A positive correlation between the laser average power and thicknesses of oxide layers and sub-layers is found.A loose oxide layer of 138μm and a sub-layer of 21μm are formed at the laser average power of 6 W,laser scanning pitch of 10μm,and laser scanning speed of 1 mm/s under an oxygen-rich atmosphere.The high efficient machining of Si Cp/Al composites can be realized by laser-induced oxidation.展开更多
The superfluorescent Yb-doped fiber source operating near 980 nm is studied. The design requirement is theoretically discussed aiming to suppress the amplified spontaneous emission around 1030 nm in the 980-rim superf...The superfluorescent Yb-doped fiber source operating near 980 nm is studied. The design requirement is theoretically discussed aiming to suppress the amplified spontaneous emission around 1030 nm in the 980-rim superfluorescent fiber source. Based on the theoretical study, a multi-Watt, all-fiber, bi-directional, pumped, superfluorescent source operating near 980 nm is designed and experimentally demonstrated for the first time, to the best of our knowledge. The recorded 8.38-W combined output power is obtained with a 3-dB bandwidth about 3.5 nm. The power scaling of the 980-nm superlfuorescent fiber source is limited by the parasitic laser oscillation.展开更多
Recently, a number of studies have focused on micro-manufacturing processes, which find use in a variety of applications, including the production of microelectromechanical systems (MEMS). The process of ablation in m...Recently, a number of studies have focused on micro-manufacturing processes, which find use in a variety of applications, including the production of microelectromechanical systems (MEMS). The process of ablation in materials is mainly governed by the laser source and scanning speed. The rate of material ablation is influenced by chemical and physical properties. In this work, the energy from a CO<sub>2</sub> laser was used to ablate three different materials, namely, stainless steel 304L, a thin film of amorphous aluminum oxide (Al<sub>2</sub>O<sub>3</sub>), and pure silicon, due to their wide use in MEMS technology. The laser parameters used were an average power of 18 W and a spot size of 200 μm. The maximum depth during the photomechanical ablation process was 72 μm in the case of 304L steel and 77 μm in the case of the Al<sub>2</sub>O<sub>3</sub> thin film for a scan rate of 24 mm/min. However, at the same scan rate, silicon did not exhibit any penetration. As expected, while increasing scanning speed the ablation depth decreases due to reduced interaction time between laser and material. The theoretical ytterbium fiber laser shown in this study can thus be employed in the manufacturing of a wide variety of materials used in the production of MEMS as well as those used in clean energy technologies.展开更多
A low-numerical-aperture(NA)concept enables large-mode-area fiber with better single-mode operation ability,which is beneficial for transverse mode instability and nonlinear effects suppression.In this contribution,we...A low-numerical-aperture(NA)concept enables large-mode-area fiber with better single-mode operation ability,which is beneficial for transverse mode instability and nonlinear effects suppression.In this contribution,we reported a high-power fiber amplifier based on a piece of self-developed large-mode-area low-NA fiber with a core NA of 0.049 and a core/inner cladding diameter of 25/400μm.The influence of the pump wavelength and fiber length on the power scaling potential of the fiber amplifier is systematically investigated.As a result,an output of 4.80 kW and a beam quality factor of~1.33 were finally obtained,which is the highest output power ever reported in a fiber amplifier exploiting the low-NA fiber.The results reveal that low-NA fibers have superiority in power scaling and beam quality maintenance at high power levels.展开更多
In this paper,we have experimentally demonstrated a high-power and high-brightness narrow-linewidth fiber amplifier seeded by an optimized fiber oscillator.In order to improve the temporal stability,the fiber oscillat...In this paper,we have experimentally demonstrated a high-power and high-brightness narrow-linewidth fiber amplifier seeded by an optimized fiber oscillator.In order to improve the temporal stability,the fiber oscillator consists of a composite fiber Bragg grating-based cavity with an external feedback structure.By optimizing the forward and backward pumping ratio,the nonlinear effects and stimulated Raman scattering-induced mode distortion of the fiber amplifier are suppressed comprehensively,accompanied with the simultaneous improvement of beam quality and output power.The laser brightness is enhanced further by raising the threshold of transverse mode instability by approximately 1.0 kW by coiling the gain fiber with a novel curvature shape.Finally,a 6 kW narrow-linewidth laser is achieved with beam quality(M^(2))of approximately 1.4.The laser brightness doubled compared to the results before optimization.To the best of our knowledge,it is the highest brightness narrow-linewidth fiber laser based on a one-stage master oscillator power amplification structure.展开更多
基金Supported by the University of Malaya under Grant No PG100-2014B
文摘We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.
基金Supported by the International Cooperation Projects of Ministry of Science and Technology under Grant No 2012DFB10120the National Natural Science Foundation of China under Grant No 61177059
文摘By using a loop mirror filter, a novel wavelength-tunable single-frequency ytterbium-doped fiber laser is developed to select single longitudinal modes in a linear cavity. The output wavelength could be tuned 2.4 nm intervals range from 1063.3 to 1065.Tnrn with the temperature change of the fiber Bragg grating. The maximum output power could reach 32 m W while the pump power increases to 120 m W. The corresponding optical-to-optical conversion efficiency is 26.7% and the slope efficiency is 33.9%, respectively. The output power fluctuation is below 2%, and its highest signal-to-noise ratio is 60 dB.
基金Supported by the National High-Technology Research and Development Program of China under Grant No 2013AA031501the Fundamental Research Funds for the Central Universities under Grant No 2014TS017
文摘We demonstrate a kW continuous-wave ytterbium-doped all-fiber laser oscillator with M1 domestic fiber compo- nents: a 7× I fused fiber bundle combiner, a fiber Bragg grating and a double-clad gain fiber. The oscillator operates at 1079.48nrn with 80.94% slope efficiency and shows no limit of temperature and nonlinear effects. These indicate that the passive fiber components and the gain fiber are all qualified for the high power environ- ment. No evidence of the signal power roll-over shows that this oscillator possesses the capacity to higher output with available pump power.
文摘With the rapid development of ytterbium-doped fiber lasers, some obtrusive limitations on power scaling appeared. In order to avoid these problems, a scheme called tandem pumping is introduced into the fiber laser field. In this paper, the optical properties of an ytterbium-doped tandem-pumped fiber oscillator are presented. According to the oscillator profile, the proper gain fiber type and pump wavelength range are picked out, under the comprehensive consideration of laser conversion efficiency and beam quality. In addition, the photodarkening performances of tandem pumping lasers and conventional ones are compared based on practical application, with all possible impact parameters taken into account. Moreover, an all-fibered tandem-pumped oscillator centered at 1079.5 nm is built, in the way of clad pumping by a 1030-nm fiber laser. The laser power of the oscillator reaches 7 W, with an opto-optic efficiency of 82.4%.
基金Supported by the Iraqi Ministry of Higher Education and Scientific Research and University of Baghdad
文摘We report on generation of a dual-wavelength, all-fiber, passively Q-switched ytterbium-doped fiber laser using aluminum oxide nanoparticle (Al2O3-NP) thin film. A thin film of Al2O3 was prepared by embedding Al2O3-NPs into a polyvinyl alcohol (PVA) as a host polymer, and then inserted between two fiber ferrules to act as a saturable absorber (SA). By incorporating the Al2O3-PVA SA into the laser cavity, a stable dual-wavelength pulse output centered at 1050 and 1060.7nm is observed at threshold pump power of 80mW. As the pump power is gradually increased from 80 to 300mW, the repetition rate of the generated pulse increases from 16.23 to 59 kHz, while the pulse width decreases from 19 to 6μs. To the best of our knowledge, this is the first demonstration for this type of SA operating in the 1 μm region.
基金Supported by the National Natural Science Foundation of China under Grant No 11404404the Outstanding Youth Fund Project of Hunan Provincethe Fund of Innovation of National University of Defense Technology under Grant No B120701
文摘We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power amplifier system. The cascaded SRS is achieved by using a long passive fiber pumped by a pulsed fiber laser cen: tered at wavelength 1064 nm. The amplified spontaneous emission during the amplification process is efficiently suppressed by cutting the length of the passive fiber and by using a double-clad ytterbium-doped fiber amplifier. The generated broadband spectrum spans from 960nm to 1700nm with maximum average output 13.6 W and average spectral power density approximately 17. 7 mW/nm.
基金supported by the Funding for Distinguished Yong Scholars of Hunan Province(No.2023JJ10057)the Training Program for Excellent Young Innovations of Changsha(No.kq2305038)the Basic Scientific Research Program(No.JCKY2021525B015).
文摘A 2×3 kW-level bidirectional output fiber oscillator is realized by combining the specially designed spindle-shaped ytterbium-doped fiber,non-wavelength-stabilized 976-nm LDs,and grating bandwidth optimization to balance transverse mode instability and stimulated Raman scattering.The maximum output powers at both ends are 3265 and 2840 W,respectively,with a total efficiency of 73.2%.The M^(2) factors of the lasers at both ends are about 1.98 and 2.38,respectively.The beam profile at both ends shows that a bidirectional output annular beam fiber oscillator has been realized,which has great potential in practical applications.
基金the National Natural Science Foundation of China(Nos.61735007 and 61705266).
文摘Power scaling based on traditional ytterbium-doped fibers(YDFs)is limited by optical nonlinear effects and transverse mode instability(TMI)in high-power fiber lasers.Here,we propose a novel long tapered fiber with a constant cladding and tapered core(CCTC)along its axis direction.The tapered-core region of the fiber is designed to enhance the stimulated Raman scattering(SRS)threshold and suppress higher-order mode resonance in the laser cavity.The CCTC YDF was fabricated successfully with a modified chemical vapor deposition(MCVD)method combined with solution doping technology,which has a cladding diameter of 400µm and a varying core with a diameter of~24μm at both ends and~31μm in the middle.To test the performance of the CCTC fiber during high-power operation,an all-fiber laser oscillator based on a CCTC YDF was investigated experimentally.As a result,a maximum output power of 3.42 kW was achieved with an optical-to-optical efficiency of 55.2%,although the TMI effect was observed at an output power of~3.12 kW.The measured beam quality(M^(2)factor)was~1.7,and no sign of the Raman component was observed in the spectrum.We believe that CCTC YDF has great potential to simultaneously mitigate the SRS and TMI effects,and further power scaling is promising by optimizing the structure of the YDF.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51321091, 61275142, 61308042, and 91022003)China Postdoctoral Science Foundation (Grant Nos. 2013M531594, 2014T70633)
文摘A compact saturable absorber mirror(SAM) based on few-layer molybdenum disulfide(MoS2) nanoplatelets was fabricated and successfully used as an efficient saturable absorber(SA) for the passively Q-switched solid-state laser at 1 μm wavelength. Pulses as short as 182 ns were obtained from a ytterbium-doped(Yb:LGGG) bulk laser Q-switched by the MoS2 SAM, which we believe to be the shortest one ever achieved from the MoS2 SAs-based Q-switched bulk lasers. A maximum average output power of 0.6 W was obtained with a slope efficiency of 24%,corresponding to single pulse energy up to 1.8 μJ. In addition, the simultaneous dual-wavelength Q-switching at 1025.2 and 1028.1 nm has been successfully achieved. The results indicate the promising potential of few-layer MoS2 nanoplatelets as nonlinear optical switches for achieving efficient pulsed bulk lasers.
基金supported by the National Research Foundation of Korea funded by the Korean Government(MSIT),South Korea(Grant Nos.NRF-2015R1A2A2A11000907 and NRF-2015R1A2A2A04006979)Ministry of Science and ICT(MSIT),Korea,under the Information Technology Research Center(ITRC)support program(IITP-2017-2015-0-00385),supervised by the Institute for Information and Communications Technology Promotion(IITP)
文摘The potential of bulk-like WTe2 particles for the realization of a passive Q-switch operating at the 1 μm wavelength was investigated. The WTe2 particles were prepared using a simple mechanical exfoliation method together with Scotch tape. By attaching bulk-like WTe2 particles, which remained on the top of the sticky surface of a small segment of the Scotch tape, to the flat side of a side-polished fiber, a saturable absorber(SA) was readily implemented. A strong saturable absorption was then readily obtained through an evanescent field interaction with the WTe2 particles. The modulation depth of the prepared SA was measured as ~2.18% at 1.03 μm. By incorporating the proposed SA into an all-fiberized ytterbium-doped fiber ring cavity, stable Qswitched pulses were readily achieved.
基金financially supported by the National High Technology Research and Development Program of China(No.2016YFB0402201)
文摘A large-mode-area(LMA) ytterbium-doped photonic crystal fiber(PCF) with core NA of 0.034 and core diameter of 50 μm was made by the stack-and-draw technique. The core is formed by Yb3+/Al3+/F-/P5+ co-doped silica glass containing 0.09 mol% Yb2O3 with an absorption coefficient at 976 nm up to 3.2 d B/m. The core glass with homogeneous distribution of Yb3+ ions and refractive index difference of 4 × 10-4 compared with pure silica was prepared by the sol-gel method and heat homogenization at 2000°C. Laser power amplification of this LMA PCF was studied using a seed source of 21 ps pulse duration and 48.7 MHz repetition rate at 1030 nm wavelength. With pump power of 520 W, a maximum 272 W(266 k W peak power) quasi-single-mode laser output with M2 of 2.2 was achieved in a 4.7 m fiber length bent at a diameter of 47 cm with slope efficiency of 52%, and no obvious mode instability, stimulated Raman scattering, or thermal damage on the end facet of the fiber were observed.
基金the Ministry of Higher Education,MOHE,for funding this work under Grant LRGS(2015) NGOD/UM/KPTthe University of Malaya,UM,for funding this work under Grant RU 001–2017
文摘A tunable passively Q-switched ytterbium-doped fiber laser using few-layer gallium selenide(GaSe) as a saturable absorber(SA) is demonstrated.The few-layer GaSe SA,which is fabricated by the mechanical exfoliation method,is able to generate a Q-switched fiber laser that has a maximum repetition rate of 92.6 kHz and a minimum pulsed width of 2.3 μs.The highest pulse energy exhibited by the generated pulse is 18.8 nJ with a signal to noise ratio of ~40 dB.The tunability of the proposed laser covers from 1042 to 1082 nm,giving a tuning range of 40 nm.
基金This work was supported in part by the Airlangga University(Grant No.804/UN3.15/PT/2021)the University of Malaya(Grant No.ML001-2017).
文摘A stable mode-locked laser was demonstrated using a newly developed zinc phthalocyanine(ZnPc)thin film as passive saturable absorber(SA)in ytterbium-doped fiber laser(YDFL).The ZnPc thin film was obtained using a casting method and then inserted between the two fiber ferrules of a YDFL ring cavity to generate mode-locked pulses.The resulting pulsed laser operated at a wavelength of 1034.5 nm having a repetition rate of 3.3 MHz.At pump power of 277 mW,the maximum output power and pulse energy are achieved at 4.92 mW and 1.36 nJ,respectively.ZnPc has a high chemical and photochemical stability,and its significance for use as a potential SA in a mode-locked laser is reported in this work.
基金support of the Eyas Program of the Academy of Opto-Electronics, Chinese Academy of Sciencesfinaqncial support from A*STAR SERC (Grant No. 112-290-4018) and A*STAR SERC Advanced Optics in Engineering Programme(Grant No. 122 360 0004)
文摘A method for optimizing the spectral distortion of an ultrafast pulse in a polarization-maintaining picosecond linear-cavity fiber laser with a one-stage fiber amplifier is proposed and demonstrated. The mechanism of control of the spectral distortion in the fiber system has been investigated. The experimental and theoretical results illustrate that the filtering effect of a fiber Bragg grating can effectively decrease the spectral oscillatory distortion accumulated by self-phase modulation. Injected into a Nd:YAG regenerative amplifier, the ultrafast pulse could produce high pulse energy of 1.2 mJ at a repetition rate of 1 kHz.
基金supported by special project of Changchun Science & Technology Office(2014228)the Development and Reform Commission of Jilin Province(2015Y69)
文摘Nd/Yb-co-doped YAG transparent ceramic nano-powder was prepared by a sol-gel combustion method.The structure,morphology and properties were characterized by thermogravimetric-differential thermal analysis,X-ray diffraction,transmission electron microscopy,infrared spectroscopy,absorption analysis and fluorescence spectroscopy,respectively.The results show that the mass loss of the powder calcinated at 900 ℃ for 3 h is 49.56%.A well-crystallized Nd/Yb:YAG nano-powder with the superior sintering performance and high purity is obtained,and the morphology of the particles with the average diameter in the range of 60-100 runs appears regular.The nano-powder exhibits an intense absorption at 808 nm,corresponding to the 4I/9/2-4F7/2 transition of Nd^(^(3+) ions,which is suitable to absorb the wavelength of 808 nm from a laser diode source.The emission peak at 1046 nm of the Nd/Yb:YAG powder is more intense than that of Nd^(^(3+):YAG powder.It is indicated that the energy absorbed by Yb^(^(3+) ions from the laser diode source can be transmitted to Nd^(^(3+) ions based on the cross relaxation process of[(4F3/2)Nd,(2F7/2)Yb]-[(479/2)Nd,(2F5/2)Yb].
基金supported by the National Natural Science Foundation of China(Nos.51705249, 52075255)the China Postdoctoral Science Foundation (No.2019M661823)
文摘Silicon carbide particle reinforced aluminum matrix composites(SiCp/Al composites)are widely used in aviation,aerospace and electronic package.However,low machining efficiency,severe tool wear and poor surface quality are severe during the machining of SiCp/Al composites.Laser-induced oxidation is capable to improve the machinability of SiCp/Al composites.The material response of 55%(volume fraction)SiCp/Al composites induced by a nanosecond pulsed laser is studied.A metamorphic layer which is composed of an oxide layer and sub-layer is produced.The effects of reaction surrounding and laser average power on the microstructure and thickness of the oxide layer and sub-layer are investigated.Experimental results show that:A thicker oxide layer and a sub-layer are formed in an oxygen-rich atmosphere.The oxides are mainly composed of 2Al2O3·SiO2(mullite).A positive correlation between the laser average power and thicknesses of oxide layers and sub-layers is found.A loose oxide layer of 138μm and a sub-layer of 21μm are formed at the laser average power of 6 W,laser scanning pitch of 10μm,and laser scanning speed of 1 mm/s under an oxygen-rich atmosphere.The high efficient machining of Si Cp/Al composites can be realized by laser-induced oxidation.
基金Project supported by the National Natural Science Foundation of China(Grant No.61405249)
文摘The superfluorescent Yb-doped fiber source operating near 980 nm is studied. The design requirement is theoretically discussed aiming to suppress the amplified spontaneous emission around 1030 nm in the 980-rim superfluorescent fiber source. Based on the theoretical study, a multi-Watt, all-fiber, bi-directional, pumped, superfluorescent source operating near 980 nm is designed and experimentally demonstrated for the first time, to the best of our knowledge. The recorded 8.38-W combined output power is obtained with a 3-dB bandwidth about 3.5 nm. The power scaling of the 980-nm superlfuorescent fiber source is limited by the parasitic laser oscillation.
文摘Recently, a number of studies have focused on micro-manufacturing processes, which find use in a variety of applications, including the production of microelectromechanical systems (MEMS). The process of ablation in materials is mainly governed by the laser source and scanning speed. The rate of material ablation is influenced by chemical and physical properties. In this work, the energy from a CO<sub>2</sub> laser was used to ablate three different materials, namely, stainless steel 304L, a thin film of amorphous aluminum oxide (Al<sub>2</sub>O<sub>3</sub>), and pure silicon, due to their wide use in MEMS technology. The laser parameters used were an average power of 18 W and a spot size of 200 μm. The maximum depth during the photomechanical ablation process was 72 μm in the case of 304L steel and 77 μm in the case of the Al<sub>2</sub>O<sub>3</sub> thin film for a scan rate of 24 mm/min. However, at the same scan rate, silicon did not exhibit any penetration. As expected, while increasing scanning speed the ablation depth decreases due to reduced interaction time between laser and material. The theoretical ytterbium fiber laser shown in this study can thus be employed in the manufacturing of a wide variety of materials used in the production of MEMS as well as those used in clean energy technologies.
基金supported by the National Key R&D Program of China(No.2022YFB3606000)State Key Laboratory of Pulsed Power Laser Technology(No.SKL2021ZR06)。
文摘A low-numerical-aperture(NA)concept enables large-mode-area fiber with better single-mode operation ability,which is beneficial for transverse mode instability and nonlinear effects suppression.In this contribution,we reported a high-power fiber amplifier based on a piece of self-developed large-mode-area low-NA fiber with a core NA of 0.049 and a core/inner cladding diameter of 25/400μm.The influence of the pump wavelength and fiber length on the power scaling potential of the fiber amplifier is systematically investigated.As a result,an output of 4.80 kW and a beam quality factor of~1.33 were finally obtained,which is the highest output power ever reported in a fiber amplifier exploiting the low-NA fiber.The results reveal that low-NA fibers have superiority in power scaling and beam quality maintenance at high power levels.
基金supported by the Science and Technology Innovation Program of Hunan Province(No.2021RC4027)。
文摘In this paper,we have experimentally demonstrated a high-power and high-brightness narrow-linewidth fiber amplifier seeded by an optimized fiber oscillator.In order to improve the temporal stability,the fiber oscillator consists of a composite fiber Bragg grating-based cavity with an external feedback structure.By optimizing the forward and backward pumping ratio,the nonlinear effects and stimulated Raman scattering-induced mode distortion of the fiber amplifier are suppressed comprehensively,accompanied with the simultaneous improvement of beam quality and output power.The laser brightness is enhanced further by raising the threshold of transverse mode instability by approximately 1.0 kW by coiling the gain fiber with a novel curvature shape.Finally,a 6 kW narrow-linewidth laser is achieved with beam quality(M^(2))of approximately 1.4.The laser brightness doubled compared to the results before optimization.To the best of our knowledge,it is the highest brightness narrow-linewidth fiber laser based on a one-stage master oscillator power amplification structure.