Extending in a NNW-SSE direction. the Yulong porphyry copper belt is the largest and richest porphyry copper belt in China, originating in the Paleogene. Tectonically located on the eastern margin of the northern Tibe...Extending in a NNW-SSE direction. the Yulong porphyry copper belt is the largest and richest porphyry copper belt in China, originating in the Paleogene. Tectonically located on the eastern margin of the northern Tibet geodepression. and nearly 500 km of the Himalayan Yarlung Zangbo plate subduction zone of nearly E-W trend. it is a relatively typical intracontinental rejuvenated platform-type porphyry copper belt. Ore-bearing porphyry masses in the belt mainly represented by monzogranite-porphyry occurring as stocks in variegated sandshale of the lower Upper Triassic Jiapila Fromation and its overlying and underlying copper-bearing strata. They are characterized by enrichment in K. CI and LREE. abundant fluid inclusions and a distinct porphyroblastic texture. The oxygen. hydrogen. strotium. lead and sulfur isotopic values of the rock show the feature of crust-mantle mixing.The Orebodies are plpe-shaped stratoid; the mineralization is dominated by Cu and Mo, accompanied by Fe. Co. Au. Ag. Bi. W. Pb. Zn. and Pt-group elements. Alteration is strong. marked mainly by potassic alteration, silicification. skarnization and propylitization. The formation of this type of deposit largely progressed through two stages. The first stage was the stage of formation of Cu-bearing source beds. It occurred in the Triassic. when a transgressive copper-bearing formation was deposited on the western margin of the Qamdo Bay. which was represented by intermediate-acid volcanic rocks and variegated sandshale in the lower part. dolomitic carbonate rocks in the middle and black carbonaceous sandshale in the upper part. In the second stage. composite porphyry copper deposits were formed. This stage took place in the Paleogene. when this district was in a stage of platform rejuvenation. forming a series of NNW-trending deep faults. so that Na, K. Cl. H2O and CO2-rich hydrothermal fluids from the depths were injected into the upper crust and replaced and melted copper-bearing sialic rocks of the upper crust. e. g. the Triassic copper-bearing rock series in the Yulong area. to form porphyroblastic cooper-bearing intermediate-acid porphyry.展开更多
Based on the theory of plate tectonics, the authors combined the concept and analytic methods of tectonic facies, and divided the western Tianshan Mt. and its adjacent area into eight tectonic facies. i. e.① Kuluktag...Based on the theory of plate tectonics, the authors combined the concept and analytic methods of tectonic facies, and divided the western Tianshan Mt. and its adjacent area into eight tectonic facies. i. e.① Kuluktage rejuvenational foreland basement fold-thrust facie, ②Kalpin rejuvenational foreland basement fold-thrust facie,③ Kuqa rejuvenational foreland fold-thrust facie. ④ Southern Tianshan backarc foreland mollasse facie. ⑤ Southern Tianshan Late Paleozoic magmatic arc facie. ⑥ Southern Tianshan backarc melange facie. ⑦ Central Tianshan composite magmatic are facie, and ⑧ Northern Tianshan foreare melange facie. F1nally. we reconstructed the history of the western Tianshan Paleozoic tectonic evolution.展开更多
With the development of English as an international language,English speakers are widely spread in the world.The English learning fashion has been greatly changed since the culture background of English as a langauge ...With the development of English as an international language,English speakers are widely spread in the world.The English learning fashion has been greatly changed since the culture background of English as a langauge has shifted to a mixed cultures instead of just British and American. But the standard varieties of British and American English have been accepted as the only generally accepted forms of standard English in China.The language learning fashion in China is about to undertake a big paradigm shift.This paper is an analysis of the English learning pattern shift in Chinese setting and therefore suggests a practical activities to apply this concept in English learning classes.展开更多
The glacier on the Yulong Mountain is one of the most important attractions in Lijiang, Yunnan, China. But it keeps retreating these years due to global warming, which is bound to influence regional tourism significan...The glacier on the Yulong Mountain is one of the most important attractions in Lijiang, Yunnan, China. But it keeps retreating these years due to global warming, which is bound to influence regional tourism significantly in Lijiang. This study estimates the effects of the glacier retreat of the Yulong Mountains on tourism there. Primary data were collected through a visitor survey including demographics, motives, lengths of stay, and opinions about each tourism resource from tourists to Lijiang, as well as questions about which scenic spot(s) they had visited or would visit, how much they expended per day during their visit and how their visiting behavior would be changed upon the hypothesis that the glacier would disappear. These data were used to analyze the proportion of the contribution of glacier to the tourism in Lijiang and estimate the impact of glacier on the regional tourism quantitatively. According to the survey, it could be concluded that three quarters of the tourists to Lijiang were interested in the Yulong Mountain glacier, indicating that the glacier possesses notable appeal for sightseeing tourists. The results of our analysis showed that about 689,013-1,508,247 tourists, accounting for 19.63-42.97 % of the total 3,510,000 domestic tourists to Lijiang in 2004, would not come to Lijiang in the absence of the glacier, resulting in a possible direct economic loss of 84,382,508-184,713,011 USD (viz. 700,374,824-1,533,117,993 RMB) and a markedly decrease in the attraction radius.展开更多
Many Cenozoic metal deposits have been found during the past decade. Among them, the Fuwan Ag deposit in Guangdong is the largest Ag deposit in China. Besides, the largest Cu deposit of China in Yulong, Tibet, the lar...Many Cenozoic metal deposits have been found during the past decade. Among them, the Fuwan Ag deposit in Guangdong is the largest Ag deposit in China. Besides, the largest Cu deposit of China in Yulong, Tibet, the largest Pb-Zn deposit of China in Jinding, Yunnan, and the largest Au deposit of China in Jinguashi, Taiwan, were also formed in the Cenozoic. Why so many important “present” deposits formed during such a short period of geological history is the key problem. The major reason is that different tectonic settings control different kinds of magmatic activity and mineralization at the same time. In southwestern China, porphyry-type Cu deposits such as Yulong were formed during the early stage of the Himalayan orogeny, sediment-hosted Pb-Zn deposits such as Jinding were formed within intermontane basins related to deep faults, and carbonatite-related deposits such as the Maoniuping REE deposit and alkalic magmatic rock-related deposits such as the Beiya Au deposit originated from the mantle source. In southeastern China, the Fuwan Ag deposit was related to continental rifting which was triggered by the mantle plume. In Taiwan, the Jinguashi Au deposit was formed during the subduction process of an oceanic plate beneath a continental plate. Besides, the features such as the diversification, inheritance, large size, deep source of metals and fluids of the Cenozoic (Present or Recent) mineralization can be used as a key to the search for past deposits.展开更多
文摘Extending in a NNW-SSE direction. the Yulong porphyry copper belt is the largest and richest porphyry copper belt in China, originating in the Paleogene. Tectonically located on the eastern margin of the northern Tibet geodepression. and nearly 500 km of the Himalayan Yarlung Zangbo plate subduction zone of nearly E-W trend. it is a relatively typical intracontinental rejuvenated platform-type porphyry copper belt. Ore-bearing porphyry masses in the belt mainly represented by monzogranite-porphyry occurring as stocks in variegated sandshale of the lower Upper Triassic Jiapila Fromation and its overlying and underlying copper-bearing strata. They are characterized by enrichment in K. CI and LREE. abundant fluid inclusions and a distinct porphyroblastic texture. The oxygen. hydrogen. strotium. lead and sulfur isotopic values of the rock show the feature of crust-mantle mixing.The Orebodies are plpe-shaped stratoid; the mineralization is dominated by Cu and Mo, accompanied by Fe. Co. Au. Ag. Bi. W. Pb. Zn. and Pt-group elements. Alteration is strong. marked mainly by potassic alteration, silicification. skarnization and propylitization. The formation of this type of deposit largely progressed through two stages. The first stage was the stage of formation of Cu-bearing source beds. It occurred in the Triassic. when a transgressive copper-bearing formation was deposited on the western margin of the Qamdo Bay. which was represented by intermediate-acid volcanic rocks and variegated sandshale in the lower part. dolomitic carbonate rocks in the middle and black carbonaceous sandshale in the upper part. In the second stage. composite porphyry copper deposits were formed. This stage took place in the Paleogene. when this district was in a stage of platform rejuvenation. forming a series of NNW-trending deep faults. so that Na, K. Cl. H2O and CO2-rich hydrothermal fluids from the depths were injected into the upper crust and replaced and melted copper-bearing sialic rocks of the upper crust. e. g. the Triassic copper-bearing rock series in the Yulong area. to form porphyroblastic cooper-bearing intermediate-acid porphyry.
文摘Based on the theory of plate tectonics, the authors combined the concept and analytic methods of tectonic facies, and divided the western Tianshan Mt. and its adjacent area into eight tectonic facies. i. e.① Kuluktage rejuvenational foreland basement fold-thrust facie, ②Kalpin rejuvenational foreland basement fold-thrust facie,③ Kuqa rejuvenational foreland fold-thrust facie. ④ Southern Tianshan backarc foreland mollasse facie. ⑤ Southern Tianshan Late Paleozoic magmatic arc facie. ⑥ Southern Tianshan backarc melange facie. ⑦ Central Tianshan composite magmatic are facie, and ⑧ Northern Tianshan foreare melange facie. F1nally. we reconstructed the history of the western Tianshan Paleozoic tectonic evolution.
文摘With the development of English as an international language,English speakers are widely spread in the world.The English learning fashion has been greatly changed since the culture background of English as a langauge has shifted to a mixed cultures instead of just British and American. But the standard varieties of British and American English have been accepted as the only generally accepted forms of standard English in China.The language learning fashion in China is about to undertake a big paradigm shift.This paper is an analysis of the English learning pattern shift in Chinese setting and therefore suggests a practical activities to apply this concept in English learning classes.
文摘The glacier on the Yulong Mountain is one of the most important attractions in Lijiang, Yunnan, China. But it keeps retreating these years due to global warming, which is bound to influence regional tourism significantly in Lijiang. This study estimates the effects of the glacier retreat of the Yulong Mountains on tourism there. Primary data were collected through a visitor survey including demographics, motives, lengths of stay, and opinions about each tourism resource from tourists to Lijiang, as well as questions about which scenic spot(s) they had visited or would visit, how much they expended per day during their visit and how their visiting behavior would be changed upon the hypothesis that the glacier would disappear. These data were used to analyze the proportion of the contribution of glacier to the tourism in Lijiang and estimate the impact of glacier on the regional tourism quantitatively. According to the survey, it could be concluded that three quarters of the tourists to Lijiang were interested in the Yulong Mountain glacier, indicating that the glacier possesses notable appeal for sightseeing tourists. The results of our analysis showed that about 689,013-1,508,247 tourists, accounting for 19.63-42.97 % of the total 3,510,000 domestic tourists to Lijiang in 2004, would not come to Lijiang in the absence of the glacier, resulting in a possible direct economic loss of 84,382,508-184,713,011 USD (viz. 700,374,824-1,533,117,993 RMB) and a markedly decrease in the attraction radius.
基金This work was supported by the 973 Program underthe State Science and Technology Commissionby the State Planning Commissionthe Ministry of Land and Resources.
文摘Many Cenozoic metal deposits have been found during the past decade. Among them, the Fuwan Ag deposit in Guangdong is the largest Ag deposit in China. Besides, the largest Cu deposit of China in Yulong, Tibet, the largest Pb-Zn deposit of China in Jinding, Yunnan, and the largest Au deposit of China in Jinguashi, Taiwan, were also formed in the Cenozoic. Why so many important “present” deposits formed during such a short period of geological history is the key problem. The major reason is that different tectonic settings control different kinds of magmatic activity and mineralization at the same time. In southwestern China, porphyry-type Cu deposits such as Yulong were formed during the early stage of the Himalayan orogeny, sediment-hosted Pb-Zn deposits such as Jinding were formed within intermontane basins related to deep faults, and carbonatite-related deposits such as the Maoniuping REE deposit and alkalic magmatic rock-related deposits such as the Beiya Au deposit originated from the mantle source. In southeastern China, the Fuwan Ag deposit was related to continental rifting which was triggered by the mantle plume. In Taiwan, the Jinguashi Au deposit was formed during the subduction process of an oceanic plate beneath a continental plate. Besides, the features such as the diversification, inheritance, large size, deep source of metals and fluids of the Cenozoic (Present or Recent) mineralization can be used as a key to the search for past deposits.