Breast phyllodes tumor(PT)is a rare fibroepithelial neoplasm with potential malignant behavior.Long non-coding RNAs(lncRNAs)play multifaceted roles in various cancers,but their involvement in breast PT remains largely...Breast phyllodes tumor(PT)is a rare fibroepithelial neoplasm with potential malignant behavior.Long non-coding RNAs(lncRNAs)play multifaceted roles in various cancers,but their involvement in breast PT remains largely unexplored.In this study,microarray was leveraged for the first time to investigate the role of lncRNA in PT.We identified lncRNA ZFPM2-AS1 was significantly upregulated in malignant PT,and its overexpression endowed PT with high tumor grade and adverse prognosis.Furthermore,we elucidated that ZFPM2-AS1 promotes the proliferation,migration,and invasion of malignant PT in vitro.Targeting ZFPM2-AS1 through nanomaterial-mediated siRNA delivery in patient-derived xenograft(PDX)model could effectively inhibit tumor progression in vivo.Mechanistically,our findings showed that ZFPM2-AS1 is competitively bound to CDC42,inhibiting ACK1 and STAT1 activation,thereby launching the transcription of TNFRSF19.In conclusion,our study provides evidence that ZFPM2-AS1 plays a pivotal role in the pathogenesis of breast PT,and suggests that ZFPM2-AS1 could serve as a prognostic indicator for patients with PT as well as a promising novel therapeutic target.展开更多
基金supported by the National Natural Science Foundation of China(82173054,82222029,82203085)the Guangdong Basic and Applied Basic Research Foundation(2022B1515020048,2022B1515020101,China)Guangzhou Science,Technology and Innovation Commission(202102010148,China).
文摘Breast phyllodes tumor(PT)is a rare fibroepithelial neoplasm with potential malignant behavior.Long non-coding RNAs(lncRNAs)play multifaceted roles in various cancers,but their involvement in breast PT remains largely unexplored.In this study,microarray was leveraged for the first time to investigate the role of lncRNA in PT.We identified lncRNA ZFPM2-AS1 was significantly upregulated in malignant PT,and its overexpression endowed PT with high tumor grade and adverse prognosis.Furthermore,we elucidated that ZFPM2-AS1 promotes the proliferation,migration,and invasion of malignant PT in vitro.Targeting ZFPM2-AS1 through nanomaterial-mediated siRNA delivery in patient-derived xenograft(PDX)model could effectively inhibit tumor progression in vivo.Mechanistically,our findings showed that ZFPM2-AS1 is competitively bound to CDC42,inhibiting ACK1 and STAT1 activation,thereby launching the transcription of TNFRSF19.In conclusion,our study provides evidence that ZFPM2-AS1 plays a pivotal role in the pathogenesis of breast PT,and suggests that ZFPM2-AS1 could serve as a prognostic indicator for patients with PT as well as a promising novel therapeutic target.