ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve...ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve were characterized by X-ray powder diffractometry,N_2 adsorption isotherms,temperature programmed desorption of ammonia and scanning electron microscopy and their properties were analyzed.Using FCC gasoline as the feed,activities of different molecular sieves for reducing olefin content were investigated in a continuous high-pressure micro-reactor unit under the following conditions:a reaction temperature of 400℃,a reaction time of 2 h,a weight hourly space velocity of 3h^(-1),and a reaction pressure of 2.0 MPa.The results showed that the HMCM-41 molecular sieve had low reaction performance,and the HZSM-5 molecular sieve demonstrated high aromatization activity,while the ZSM-5/MCM- 41 composite molecular sieve exhibited a best olefin-reducing performance because of its high isomerization activity and moderate aromatization activity.With a largest olefin-reducmg capability and a reasonable distribution of products,the composite molecular sieve was more suitable for FCC gasoline upgrading compared to other three catalysts.展开更多
This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil( CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized...This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil( CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized through a self-assembly of cetyltrimethylammonium bromide( CTAB) surfactant with silica-alumina from ZSM-5 zeolite,prepared from natural kaolin by the hydrothermal technique. Subsequently,the synthesized composites were deposited with bimetallic NiMo and NiW by impregnation method. The obtained catalysts presented a micro-mesoporous structure,confirmed by XRD,SEM,TEM,EDX,NH_3-TPD,XRF and N_2 adsorption-desorption measurements. The results of CPO conversion demonstrate that the catalytic activity of the synthesized catalysts decreases in the series of NiMo-ZSM-5/MCM-41 > NiW-ZSM-5/MCM-41 > Ni-ZSM-5/MCM-41 > Mo-ZSM-5/MCM-41 > W-ZSM-5/MCM-41 > NiMo-ZSM-5 > NiW-ZSM-5 > ZSM-5/MCM-41 > ZSM-5 > MCM-41. It was found that the bimetallic NiMo-and NiW-ZSM-5/MCM-41 catalysts give higher yields of liquid hydrocarbons than other catalysts at a given conversion. Types of hydrocarbon in liquid products,identified by simulated distillation gas chromatography-flame ionization detector( SimDis GC-FID),are gasoline( 150-200 ℃; C5-12),kerosene( 250-300 ℃; C5-20) and diesel( 350 ℃; C7-20).Moreover,the conversion of CPO to biofuel products using the NiMo-and NiW-ZSM-5/MCM-41 catalysts offers no statistically significant difference( P> 0.05) at 95% confidence level,evaluated by SPSS analysis.展开更多
文摘ZSM-5/MCM-41 composite molecular sieve was prepared by the nano-assembling method.The ZSM-5 molecular sieve,the MCM-41 molecular sieve,the ZSM-5/MCM-41 mechanical mixture and the ZSM-5/MCM-41 composite molecular sieve were characterized by X-ray powder diffractometry,N_2 adsorption isotherms,temperature programmed desorption of ammonia and scanning electron microscopy and their properties were analyzed.Using FCC gasoline as the feed,activities of different molecular sieves for reducing olefin content were investigated in a continuous high-pressure micro-reactor unit under the following conditions:a reaction temperature of 400℃,a reaction time of 2 h,a weight hourly space velocity of 3h^(-1),and a reaction pressure of 2.0 MPa.The results showed that the HMCM-41 molecular sieve had low reaction performance,and the HZSM-5 molecular sieve demonstrated high aromatization activity,while the ZSM-5/MCM- 41 composite molecular sieve exhibited a best olefin-reducing performance because of its high isomerization activity and moderate aromatization activity.With a largest olefin-reducmg capability and a reasonable distribution of products,the composite molecular sieve was more suitable for FCC gasoline upgrading compared to other three catalysts.
基金The financial supported by Nakhon Ratchasima Rajabhat University,Nakhon Ratchasimathe National Research Council of Thailand+3 种基金Center of Excellence for Innovation in Chemistry (PERCH-CIC)Office of the Higher Education CommissionMinistry of Education and Materials Chemistry Research CenterDepartment of Chemistry Faculty of Science,Khon Kaen University,Thailand
文摘This work presents a synthesis of bimetallic NiMo and NiW modified ZSM-5/MCM-41 composites and their heterogeneous catalytic conversion of crude palm oil( CPO) to biofuels. The ZSM-5/MCM-41 composites were synthesized through a self-assembly of cetyltrimethylammonium bromide( CTAB) surfactant with silica-alumina from ZSM-5 zeolite,prepared from natural kaolin by the hydrothermal technique. Subsequently,the synthesized composites were deposited with bimetallic NiMo and NiW by impregnation method. The obtained catalysts presented a micro-mesoporous structure,confirmed by XRD,SEM,TEM,EDX,NH_3-TPD,XRF and N_2 adsorption-desorption measurements. The results of CPO conversion demonstrate that the catalytic activity of the synthesized catalysts decreases in the series of NiMo-ZSM-5/MCM-41 > NiW-ZSM-5/MCM-41 > Ni-ZSM-5/MCM-41 > Mo-ZSM-5/MCM-41 > W-ZSM-5/MCM-41 > NiMo-ZSM-5 > NiW-ZSM-5 > ZSM-5/MCM-41 > ZSM-5 > MCM-41. It was found that the bimetallic NiMo-and NiW-ZSM-5/MCM-41 catalysts give higher yields of liquid hydrocarbons than other catalysts at a given conversion. Types of hydrocarbon in liquid products,identified by simulated distillation gas chromatography-flame ionization detector( SimDis GC-FID),are gasoline( 150-200 ℃; C5-12),kerosene( 250-300 ℃; C5-20) and diesel( 350 ℃; C7-20).Moreover,the conversion of CPO to biofuel products using the NiMo-and NiW-ZSM-5/MCM-41 catalysts offers no statistically significant difference( P> 0.05) at 95% confidence level,evaluated by SPSS analysis.