提出一种高精度的ZWD模型(tianjin_zwd,TZ)。TZ基于2016-2018年逐小时气压分层的ERA5,欧洲中尺度气象预报中心第五代再分析产品数据,采用BP神经网络建立。然后,根据2019年的ERA5产品导出的ZWD对TZ模型进行了验证。结果表明:相比GPT3模型...提出一种高精度的ZWD模型(tianjin_zwd,TZ)。TZ基于2016-2018年逐小时气压分层的ERA5,欧洲中尺度气象预报中心第五代再分析产品数据,采用BP神经网络建立。然后,根据2019年的ERA5产品导出的ZWD对TZ模型进行了验证。结果表明:相比GPT3模型,TZ模型可提供更贴近真值的ZWD估值;并且,其RMSE由5.0 cm (GPT3)降至4.5 cm,表明10%的精度提升。上述结果表明TZ模型实现了更优的预测性能,该模型的构建策略可为全国其他地区的ZWD建模提供借鉴。展开更多
探讨了利用地基GPS气象学原理反演大气可降水量(precipitable water vapor,PWV)及其变化的可行性。从理论上分析了在缺少地面气象资料时用模型估计气象元素对反演PWV的影响,分析了用IGS超快速星历代替IGS最终精密星历准实时计算PWV的可...探讨了利用地基GPS气象学原理反演大气可降水量(precipitable water vapor,PWV)及其变化的可行性。从理论上分析了在缺少地面气象资料时用模型估计气象元素对反演PWV的影响,分析了用IGS超快速星历代替IGS最终精密星历准实时计算PWV的可行性。利用三峡地区13个监测点连续48 h以上的跟踪数据联合国内的几个IGS站,使用GAMIT软件进行了数据处理。展开更多
The International GNSS Service(IGS) final products(ephemeris and clocks-correction) have made the GNSS an indispensable low-cost tool for scientific research, for example sub-daily atmospheric water vapor monitoring. ...The International GNSS Service(IGS) final products(ephemeris and clocks-correction) have made the GNSS an indispensable low-cost tool for scientific research, for example sub-daily atmospheric water vapor monitoring. In this study, we investigate if there is a systematic difference coming from the choice between the Vienna Mapping Function 1(VMF1) and the Global Mapping Function(GMF) for the modeling of Zenith Total Delay(ZTD) estimates, as well as the Integrated Precipitable Water Vapor(IPWV) estimates that are deduced from them. As ZTD estimates cannot be fully separated from coordinate estimates, we also investigated the coordinate repeatability between subsequent measurements.For this purpose, we monitored twelve GNSS stations on a global scale, for each of the three climatic zones(polar, mid-latitudes and tropical), with four stations on each zone. We used an automated processing based on the Bernese GNSS Software Version 5.2 by applying the Precise Point Positioning(PPP)approach, L3 Ionosphere-free linear combination, 7 cutoff elevation angle and 2 h sampling. We noticed an excellent agreement with the ZTD estimates and coordinate repeatability for all the stations w.r.t to CODE(the Center for Orbit Determination in Europe) and USNO(US Naval Observatory) products, except for the Antarctic station(Davis) which shows systematic biases for the GMF related results. As a final step, we investigated the effect of using two mapping functions(VMF1 and GMF) to estimate the IPWV,w.r.t the IPWV estimates provided by the Integrated Global Radiosonde Archive(IGRA). The GPS-derived IPWV estimates are very close to the radiosonde-derived IPWV estimates, except for one station in the tropics(Tahiti).展开更多
The estimation of Precipitable Water Vapor (PWV) derived from Global Positioning System (GPS) data at the IGS site WUHN is assessed by comparing with PWV obtained from radiosonde data (No.57494) in Wuhan. The ap...The estimation of Precipitable Water Vapor (PWV) derived from Global Positioning System (GPS) data at the IGS site WUHN is assessed by comparing with PWV obtained from radiosonde data (No.57494) in Wuhan. The applicability of Saastamoinen (SAAS), Hopfield and Black models used for estimating Zenith Hydrostatic Delay (ZHD) and Zenith Wet Delay (ZWD) and different models is verified in the estimation of GPS-derived PWV for the applied area. The experimental results demonstrated that : 1 ) the precision of PWV estimated from Black model used for calculating ZHD ( ZHDs ) is lower than that of SAAS ( ZHDsAAs ) model and Hopfield model (ZHDn) with the RMS of 4. 16 ram; 2) the RMS of PWV estimated from SAAS model used for calculating ZWD (SAAS) is 3.78 ram; 3 ) the well-known Bevis model gives similar accuracy compared with the site-specific models for Tm in terms of surface temperature ( Ts ) and surface pressure (Ps), which can reach the accuracy inside 1 mm in the GPS-derived PWV estimates.展开更多
文摘提出一种高精度的ZWD模型(tianjin_zwd,TZ)。TZ基于2016-2018年逐小时气压分层的ERA5,欧洲中尺度气象预报中心第五代再分析产品数据,采用BP神经网络建立。然后,根据2019年的ERA5产品导出的ZWD对TZ模型进行了验证。结果表明:相比GPT3模型,TZ模型可提供更贴近真值的ZWD估值;并且,其RMSE由5.0 cm (GPT3)降至4.5 cm,表明10%的精度提升。上述结果表明TZ模型实现了更优的预测性能,该模型的构建策略可为全国其他地区的ZWD建模提供借鉴。
文摘探讨了利用地基GPS气象学原理反演大气可降水量(precipitable water vapor,PWV)及其变化的可行性。从理论上分析了在缺少地面气象资料时用模型估计气象元素对反演PWV的影响,分析了用IGS超快速星历代替IGS最终精密星历准实时计算PWV的可行性。利用三峡地区13个监测点连续48 h以上的跟踪数据联合国内的几个IGS站,使用GAMIT软件进行了数据处理。
基金the innovation carrier project by Zhejiang provincial science and Technology Department (2017F10008)the French Space Agency (CNES) for their funding, through a DAR grant to the Geodesy Observatory of Tahiti
文摘The International GNSS Service(IGS) final products(ephemeris and clocks-correction) have made the GNSS an indispensable low-cost tool for scientific research, for example sub-daily atmospheric water vapor monitoring. In this study, we investigate if there is a systematic difference coming from the choice between the Vienna Mapping Function 1(VMF1) and the Global Mapping Function(GMF) for the modeling of Zenith Total Delay(ZTD) estimates, as well as the Integrated Precipitable Water Vapor(IPWV) estimates that are deduced from them. As ZTD estimates cannot be fully separated from coordinate estimates, we also investigated the coordinate repeatability between subsequent measurements.For this purpose, we monitored twelve GNSS stations on a global scale, for each of the three climatic zones(polar, mid-latitudes and tropical), with four stations on each zone. We used an automated processing based on the Bernese GNSS Software Version 5.2 by applying the Precise Point Positioning(PPP)approach, L3 Ionosphere-free linear combination, 7 cutoff elevation angle and 2 h sampling. We noticed an excellent agreement with the ZTD estimates and coordinate repeatability for all the stations w.r.t to CODE(the Center for Orbit Determination in Europe) and USNO(US Naval Observatory) products, except for the Antarctic station(Davis) which shows systematic biases for the GMF related results. As a final step, we investigated the effect of using two mapping functions(VMF1 and GMF) to estimate the IPWV,w.r.t the IPWV estimates provided by the Integrated Global Radiosonde Archive(IGRA). The GPS-derived IPWV estimates are very close to the radiosonde-derived IPWV estimates, except for one station in the tropics(Tahiti).
基金supported by the National Natural Science Foundation of China(4106400141071294)+1 种基金Guangxi Key Laboratory of Spatial Information and Geomatics(GuiKeJi 1103108-06)the Natural Science Foundation of Guangxi(2012GXNSFAA053183)
文摘The estimation of Precipitable Water Vapor (PWV) derived from Global Positioning System (GPS) data at the IGS site WUHN is assessed by comparing with PWV obtained from radiosonde data (No.57494) in Wuhan. The applicability of Saastamoinen (SAAS), Hopfield and Black models used for estimating Zenith Hydrostatic Delay (ZHD) and Zenith Wet Delay (ZWD) and different models is verified in the estimation of GPS-derived PWV for the applied area. The experimental results demonstrated that : 1 ) the precision of PWV estimated from Black model used for calculating ZHD ( ZHDs ) is lower than that of SAAS ( ZHDsAAs ) model and Hopfield model (ZHDn) with the RMS of 4. 16 ram; 2) the RMS of PWV estimated from SAAS model used for calculating ZWD (SAAS) is 3.78 ram; 3 ) the well-known Bevis model gives similar accuracy compared with the site-specific models for Tm in terms of surface temperature ( Ts ) and surface pressure (Ps), which can reach the accuracy inside 1 mm in the GPS-derived PWV estimates.