Two types of symmetry of a generalized Zakharov-Kuznetsov equation are obtained via a direct symmetry method. By selecting suitable parameters occurring in the symmetries, we also find some symmetry reductions and new...Two types of symmetry of a generalized Zakharov-Kuznetsov equation are obtained via a direct symmetry method. By selecting suitable parameters occurring in the symmetries, we also find some symmetry reductions and new explicit solutions of the generalized Zakharov-Kuznetsov equation.展开更多
The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutio...The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutionsof the Z-K equation are obtained.The methods used to solve the Z-K equation can be employed in further work toestablish new solutions for other nonlinear partial differential equations.展开更多
We propose an explicit multi-symplectic method to solve the two-dimensional Zakharov-Kuznetsov equation. The method combines the multi-symplectic Fourier pseudospectral method for spatial discretization and the Euler ...We propose an explicit multi-symplectic method to solve the two-dimensional Zakharov-Kuznetsov equation. The method combines the multi-symplectic Fourier pseudospectral method for spatial discretization and the Euler method for temporal discretization. It is verified that the proposed method has corresponding discrete multi-symplectic conservation laws. Numerical simulations indicate that the proposed scheme is characterized by excellent conservation.展开更多
his paper studies the generalized (2 + 1)-dimensional Zakharov-Kuznetsov equation using the (G'/G)-expand method, we obtain many new explicit solutions of the generalized (2 + 1)-dimensional Zakharov-Kuznetsov equ...his paper studies the generalized (2 + 1)-dimensional Zakharov-Kuznetsov equation using the (G'/G)-expand method, we obtain many new explicit solutions of the generalized (2 + 1)-dimensional Zakharov-Kuznetsov equation, which include hyperbolic function solutions, trigonometric function solutions and rational function solutions and so on.展开更多
By means of the classical method, we investigate the (3+1)-dimensional Zakharov-Kuznetsov equation. The symmetry group of the (3+1)-dimensional Zakharov-Kuznetsov equation is studied first and the theorem of gro...By means of the classical method, we investigate the (3+1)-dimensional Zakharov-Kuznetsov equation. The symmetry group of the (3+1)-dimensional Zakharov-Kuznetsov equation is studied first and the theorem of group invariant solutions is constructed. Then using the associated vector fields of the obtained symmetry, we give the one-, two-, and three-parameter optimal systems of group-invariant solutions. Based on the optimal system, we derive the reductions and some new solutions of the (3+1)-dimensional Zakharov-Kuznetsov equation.展开更多
In this paper, the symmetry method has been carried over to the generalized variable coefficients Zakharov- Kuznetsov equation. The infinitesimal symmetries and the optimal system are deduced and from this optimal sys...In this paper, the symmetry method has been carried over to the generalized variable coefficients Zakharov- Kuznetsov equation. The infinitesimal symmetries and the optimal system are deduced and from this optimal system seven basic fields are determined, and for every vector field in the optimal system the admissible forms of the coefficients are found and this also leads us to transform the given equation into partial differential equations in two variables. After using some referenced transformations the mentioned partial differential equations eventually reduce to ordinary differential equations. The search for solutions to those equations has yielded many exact solutions in most cases.展开更多
The modified Zakharov-Kuznetsov equation with the initial value problem is studied numerically by means of homotopy perturbation method. The analytical approximate solutions of the modified Zakharov-Kuznetsov equation...The modified Zakharov-Kuznetsov equation with the initial value problem is studied numerically by means of homotopy perturbation method. The analytical approximate solutions of the modified Zakharov-Kuznetsov equation are obtained. Choosing the form of the initial value, the single solitary wave, two solitary waves and rational solutions are presented, some of which are shown by the plots.展开更多
The aim of this paper is to obtain the approximate analytical solution of a fractional Zakharov-Kuznetsov equation by using homotopy perturbation method (HPM). The fractional derivatives are described in the Caputo se...The aim of this paper is to obtain the approximate analytical solution of a fractional Zakharov-Kuznetsov equation by using homotopy perturbation method (HPM). The fractional derivatives are described in the Caputo sense. Several examples are given and the results are compared to exact solutions. The results reveal that the method is very effective and simple.展开更多
In this paper, we get many new analytical solutions of the space-time nonlinear fractional modified KDV-Zakharov Kuznetsov (mKDV-ZK) equation by means of a new approach namely method of undetermined coefficients based...In this paper, we get many new analytical solutions of the space-time nonlinear fractional modified KDV-Zakharov Kuznetsov (mKDV-ZK) equation by means of a new approach namely method of undetermined coefficients based on a fractional complex transform. These solutions have physics meanings in natural sciences. This method can be used to other nonlinear fractional differential equations.展开更多
Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct dou...Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.展开更多
In this paper,some travelling wave solutions involving parameters of the Modified Zakharov-Kuznetsovequation [Phys.Lett.A 372 (2008) 3400] are investigated.We will show that these solutions are not new travellingwave ...In this paper,some travelling wave solutions involving parameters of the Modified Zakharov-Kuznetsovequation [Phys.Lett.A 372 (2008) 3400] are investigated.We will show that these solutions are not new travellingwave solutions.展开更多
In the present paper, with the aid of symbolic computation, families of new nontrivial solutions of the first-order sub-ODE F12 = AF2 + BF2+p + CF2+2p (where F1= dF/dε, p 〉 0) are obtained. To our best knowled...In the present paper, with the aid of symbolic computation, families of new nontrivial solutions of the first-order sub-ODE F12 = AF2 + BF2+p + CF2+2p (where F1= dF/dε, p 〉 0) are obtained. To our best knowledge, these nontrivial solutions have not been found in [X.Z. Li and M.L. Wang, Phys. Lett. A 361 (2007) 115] and IS. Zhang, W. Wang, and J.L. Tong, Phys. Lett. A 372 (2008) 3808] and other existent papers until now. Using these nontrivial solutions, the sub-ODE method is described to construct several kinds of exact travelling wave solutions for the generalized KdV-mKdV equation with higher-order nonlinear terms and the generalized ZK equation with higher-order nonlinear terms. By means of this method, many other physically important nonlinear partial differential equations with nonlinear terms of any order can be investigated and new nontrivial solutions can be explicitly obtained with the help of symbolic computation system Maple or Mathematics.展开更多
基金The project supported by Natural Science Foundation of Shandong Province of China under Grant 2004 zx 16The authors would like to thank professor Bai Cheng-Lin and the referees for their valuable advices.
文摘Two types of symmetry of a generalized Zakharov-Kuznetsov equation are obtained via a direct symmetry method. By selecting suitable parameters occurring in the symmetries, we also find some symmetry reductions and new explicit solutions of the generalized Zakharov-Kuznetsov equation.
基金Supported by the National Natural Science Foundation of China under Grant No.10974160
文摘The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov (Z-K) equationare explored by the method of the improved generalized auxiliary differential equation.Many explicit analytic solutionsof the Z-K equation are obtained.The methods used to solve the Z-K equation can be employed in further work toestablish new solutions for other nonlinear partial differential equations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10971226, 91130013, and 11001270)the National Basic Research Program of China (Grant No. 2009CB723802)
文摘We propose an explicit multi-symplectic method to solve the two-dimensional Zakharov-Kuznetsov equation. The method combines the multi-symplectic Fourier pseudospectral method for spatial discretization and the Euler method for temporal discretization. It is verified that the proposed method has corresponding discrete multi-symplectic conservation laws. Numerical simulations indicate that the proposed scheme is characterized by excellent conservation.
文摘his paper studies the generalized (2 + 1)-dimensional Zakharov-Kuznetsov equation using the (G'/G)-expand method, we obtain many new explicit solutions of the generalized (2 + 1)-dimensional Zakharov-Kuznetsov equation, which include hyperbolic function solutions, trigonometric function solutions and rational function solutions and so on.
基金supported by the National Natural Science Foundation of China (Grant Nos.10735030 and 90718041)Shanghai Leading Academic Discipline Project,China (Grant No.B412)Program for Changjiang Scholars and Innovative Research Team in University,China (Grant No.IRT0734)
文摘By means of the classical method, we investigate the (3+1)-dimensional Zakharov-Kuznetsov equation. The symmetry group of the (3+1)-dimensional Zakharov-Kuznetsov equation is studied first and the theorem of group invariant solutions is constructed. Then using the associated vector fields of the obtained symmetry, we give the one-, two-, and three-parameter optimal systems of group-invariant solutions. Based on the optimal system, we derive the reductions and some new solutions of the (3+1)-dimensional Zakharov-Kuznetsov equation.
文摘In this paper, the symmetry method has been carried over to the generalized variable coefficients Zakharov- Kuznetsov equation. The infinitesimal symmetries and the optimal system are deduced and from this optimal system seven basic fields are determined, and for every vector field in the optimal system the admissible forms of the coefficients are found and this also leads us to transform the given equation into partial differential equations in two variables. After using some referenced transformations the mentioned partial differential equations eventually reduce to ordinary differential equations. The search for solutions to those equations has yielded many exact solutions in most cases.
文摘The modified Zakharov-Kuznetsov equation with the initial value problem is studied numerically by means of homotopy perturbation method. The analytical approximate solutions of the modified Zakharov-Kuznetsov equation are obtained. Choosing the form of the initial value, the single solitary wave, two solitary waves and rational solutions are presented, some of which are shown by the plots.
文摘The aim of this paper is to obtain the approximate analytical solution of a fractional Zakharov-Kuznetsov equation by using homotopy perturbation method (HPM). The fractional derivatives are described in the Caputo sense. Several examples are given and the results are compared to exact solutions. The results reveal that the method is very effective and simple.
文摘In this paper, we get many new analytical solutions of the space-time nonlinear fractional modified KDV-Zakharov Kuznetsov (mKDV-ZK) equation by means of a new approach namely method of undetermined coefficients based on a fractional complex transform. These solutions have physics meanings in natural sciences. This method can be used to other nonlinear fractional differential equations.
文摘Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.
基金Supported by National Natural Science Foundation of China under Grant No.10671171
文摘In this paper,some travelling wave solutions involving parameters of the Modified Zakharov-Kuznetsovequation [Phys.Lett.A 372 (2008) 3400] are investigated.We will show that these solutions are not new travellingwave solutions.
文摘In the present paper, with the aid of symbolic computation, families of new nontrivial solutions of the first-order sub-ODE F12 = AF2 + BF2+p + CF2+2p (where F1= dF/dε, p 〉 0) are obtained. To our best knowledge, these nontrivial solutions have not been found in [X.Z. Li and M.L. Wang, Phys. Lett. A 361 (2007) 115] and IS. Zhang, W. Wang, and J.L. Tong, Phys. Lett. A 372 (2008) 3808] and other existent papers until now. Using these nontrivial solutions, the sub-ODE method is described to construct several kinds of exact travelling wave solutions for the generalized KdV-mKdV equation with higher-order nonlinear terms and the generalized ZK equation with higher-order nonlinear terms. By means of this method, many other physically important nonlinear partial differential equations with nonlinear terms of any order can be investigated and new nontrivial solutions can be explicitly obtained with the help of symbolic computation system Maple or Mathematics.