High-temperature compressive deformation behaviors of Mg–6Zn–1.5Y–0.5Ce–0.4Zr alloy were investigated at temperatures and strain rates ranging from 523 to 673 K and from 0.001 to 1 s~(-1),respectively.The studied ...High-temperature compressive deformation behaviors of Mg–6Zn–1.5Y–0.5Ce–0.4Zr alloy were investigated at temperatures and strain rates ranging from 523 to 673 K and from 0.001 to 1 s~(-1),respectively.The studied alloy was mainly composed ofα-Mg,Mg_(3)Zn_(6)Y(I phase),Mg–Zn–Ce and Mg_(3)Zn_(3)Y_(2)(W phase).The constitutive equation of Mg alloy was obtained,and the apparent activation energy(Q)was determined as 200.44 k J/mol,indicating that rare earth phase increases the difficulty of deformation.The work hardening involves three stages:(1)linear hardening stage;(2)strain hardening stage;and(3)softening and steady-state stage.During these three stages,the dislocation aggregation and tangling,dynamic recovery and recrystallization occur sequentially.To characterize the dynamic recrystallization(DRX)volume fraction,the DRX kinetics was investigated using the Avrami-type equation.The deformation mechanism of magnesium alloy under different Zener–Hollomon parameter(Z)value conditions was also studied.At high Z values and intermediate conditions,dislocations rapidly generate and pile up in the alloy.Recrystallization is hardly seen at this time.At low Z condition,the DRX occurs in the alloy.展开更多
In order to establish a model between the grain size and the process parameters, the hot deformation behaviors of Ti 49.5Al alloy was investigated by isothermal compressive tests at temperatures ranging from 800 to 1?...In order to establish a model between the grain size and the process parameters, the hot deformation behaviors of Ti 49.5Al alloy was investigated by isothermal compressive tests at temperatures ranging from 800 to 1?100 ℃ with strain rates of 10 -3 10 -1 s -1 . Within this range, the deformation behavior obeys the power law relationship, which can be described using the kinetic rate equation. The stress exponent, n , has a value of about 5.0, and the apparent activation energy is about 320 J/mol, which fits well with the value estimated in previous investigations. The results show that, the dependence of flow stress on the recrystallized grain size can be expressed by the equation: σ=K 1d rex -0 56 . The relationship between the deformed microstructure and the process control parameter can be expressed by the formula: lg d rex =-0 281?1gZ +3 908?1.展开更多
基金financially supported by the National Key R&D Program of China(2016YFB0301100)the Natural Science Foundation of Chongqing,China(cstc2019jcyj-msxmX0505)the support of the“111 Project”(B16007)by the Ministry of Education and Fundamental Research Fund of Central Universities in China(Grant No.2018CDJDCL0019)。
文摘High-temperature compressive deformation behaviors of Mg–6Zn–1.5Y–0.5Ce–0.4Zr alloy were investigated at temperatures and strain rates ranging from 523 to 673 K and from 0.001 to 1 s~(-1),respectively.The studied alloy was mainly composed ofα-Mg,Mg_(3)Zn_(6)Y(I phase),Mg–Zn–Ce and Mg_(3)Zn_(3)Y_(2)(W phase).The constitutive equation of Mg alloy was obtained,and the apparent activation energy(Q)was determined as 200.44 k J/mol,indicating that rare earth phase increases the difficulty of deformation.The work hardening involves three stages:(1)linear hardening stage;(2)strain hardening stage;and(3)softening and steady-state stage.During these three stages,the dislocation aggregation and tangling,dynamic recovery and recrystallization occur sequentially.To characterize the dynamic recrystallization(DRX)volume fraction,the DRX kinetics was investigated using the Avrami-type equation.The deformation mechanism of magnesium alloy under different Zener–Hollomon parameter(Z)value conditions was also studied.At high Z values and intermediate conditions,dislocations rapidly generate and pile up in the alloy.Recrystallization is hardly seen at this time.At low Z condition,the DRX occurs in the alloy.
文摘In order to establish a model between the grain size and the process parameters, the hot deformation behaviors of Ti 49.5Al alloy was investigated by isothermal compressive tests at temperatures ranging from 800 to 1?100 ℃ with strain rates of 10 -3 10 -1 s -1 . Within this range, the deformation behavior obeys the power law relationship, which can be described using the kinetic rate equation. The stress exponent, n , has a value of about 5.0, and the apparent activation energy is about 320 J/mol, which fits well with the value estimated in previous investigations. The results show that, the dependence of flow stress on the recrystallized grain size can be expressed by the equation: σ=K 1d rex -0 56 . The relationship between the deformed microstructure and the process control parameter can be expressed by the formula: lg d rex =-0 281?1gZ +3 908?1.