An accurate scheme for determining the electronic factor of the electron self-exchange reaction in solution is presented in this paper. The used various activation parameters and slopes of potential energy surfaces ar...An accurate scheme for determining the electronic factor of the electron self-exchange reaction in solution is presented in this paper. The used various activation parameters and slopes of potential energy surfaces are obtained in terms of an improved activation model and the accurate potential function determined from the vibrational spectroscopic and thermodynamic data. The coupling matrix elements are determined using numerical integral method over the perturbed double-zeta Slater type state functions. Theoretical results of electronic factor in this work are found in close agreement with those extracted from experimental rate constant data and to be less than unity. Results indicate that outer-sphere electron transfer reactions in solution involving hydrated transition metal ions are nonadiabatic in nature.展开更多
基金Project supported by the Natural Science Foundation of Shandong Province,China.
文摘An accurate scheme for determining the electronic factor of the electron self-exchange reaction in solution is presented in this paper. The used various activation parameters and slopes of potential energy surfaces are obtained in terms of an improved activation model and the accurate potential function determined from the vibrational spectroscopic and thermodynamic data. The coupling matrix elements are determined using numerical integral method over the perturbed double-zeta Slater type state functions. Theoretical results of electronic factor in this work are found in close agreement with those extracted from experimental rate constant data and to be less than unity. Results indicate that outer-sphere electron transfer reactions in solution involving hydrated transition metal ions are nonadiabatic in nature.