The coronavirus disease 2019(COVID-19)mortality rate in 55 African countries is almost 4.5 times lower than in the coronavirus disease 2019(COVID-19)despite Africa having over 4.2 times more people.This mortality para...The coronavirus disease 2019(COVID-19)mortality rate in 55 African countries is almost 4.5 times lower than in the coronavirus disease 2019(COVID-19)despite Africa having over 4.2 times more people.This mortality paradox is also evident when comparing Nigeria,a heavily populated,poorly vaccinated and weakly mandated country to Israel,a small,highly vaccinated and strictly mandated country.Nigeria has almost 4 times lower COVID mortality than Israel.In this Field of Vision perspective,I explain how this paradox has evolved drawing upon my academic,clinical and social experience.Since April 2020,I’ve developed and been using the Egyptian immune-modulatory Kelleni’s protocol to manage COVID-19 patients including pediatric,geriatric,pregnant,immune-compromised and other individuals suffering from multiple comorbidities.It’s unfortunate that severe acute respiratory syndrome coronavirus 2 is still evolving accompanied by more deaths.However in Africa,we’ve been able to live without anxiety or mandates throughout the pandemic because we trust science and adopted early treatment using safe,and effective repurposed drugs that have saved the majority of COVID-19 patients.This article represents an African and Egyptian tale of honor.展开更多
Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used ...Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used to partially explain this paradox, while introducing new problems. Hereby, we propose a better theory, named Sun Matters Theory, to explain this paradox. Moreover, this unique theory supports and extended the Einstein’s static universe model proposed by Albert Einstein in 1917. Further, we proposed our new universe model, “Sun Model of Universe”. Based on the new model and novel theory, we generated innovative field equation by upgrading Einstein’s Field Equation through adding back the cosmological constant, introducing a new variable and modifying the gravitationally-related concepts. According to the Sun Model of Universe, the dark matter and dark energy comprise the so-called “Sun Matters”. The observed phenomenon like the red shift is explained as due to the interaction of ordinary light with Sun Matters leading to its energy and frequency decrease. In Sun Model, our big universe consists of many universes with ordinary matter at the core mixed and surrounded with the Sun Matters. In those universes, the laws of physics may be completely or partially different from that of our ordinary universe with parallel civilizations. The darkness of night can be easily explained as resulting from the interaction of light with the Sun Matters leading to the sharp decrease in the light intensity. Sun Matters also scatter the light from a star, which makes it shining as observed by Hubble. Further, there is a kind of Sun Matters named “Sun Waters”, surrounding every starts. When lights pass by the sun, the Sun Waters deflect the lights to bend the light path. According to the Sun Model, it is the light bent not the space bent that was proposed in the theory of relativities.展开更多
In contrast to the solutions of applied mathematics to Zeno’s paradoxes, I focus on the concept of motion and show that, by distinguishing two different forms of motion, Zeno’s apparent paradoxes are not paradoxical...In contrast to the solutions of applied mathematics to Zeno’s paradoxes, I focus on the concept of motion and show that, by distinguishing two different forms of motion, Zeno’s apparent paradoxes are not paradoxical at all. Zeno’s paradoxes indirectly prove that distances are not composed of extensionless points and, in general, that a higher dimension cannot be completely composed of lower ones. Conversely, lower dimensions can be understood as special cases of higher dimensions. To illustrate this approach, I consider Cantor’s only apparent proof that the real numbers are uncountable. However, his widely accepted indirect proof has the disadvantage that it depends on whether there is another way to make the real numbers countable. Cantor rightly assumes that there can be no smallest number between 0 and 1, and therefore no beginning of counting. For this reason he arbitrarily lists the real numbers in order to show with his diagonal method that this list can never be complete. The situation is different if we start with the largest number between 0 and 1 (0.999…) and use the method of an inverted triangle, which can be understood as a special fractal form. Here we can construct a vertical and a horizontal stratification with which it is actually possible to construct all real numbers between 0 and 1 without exception. Each column is infinite, and each number in that column is the starting point of a new triangle, while each row is finite. Even in a simple sine curve, we experience finiteness with respect to the y-axis and infinity with respect to the x-axis. The first parts of this article show that Zeno’s assumptions contradict the concept of motion as such, so it is not surprising that this misconstruction leads to contradictions. In the last part, I discuss Cantor’s diagonal method and explain the method of an inverted triangle that is internally structured like a fractal by repeating this inverted triangle at each column. The consequence is that we encounter two very different methods of counting. Vertically it is continuous, horizontally it is discrete. While Frege, Tarski, Cantor, Gödel and the Vienna Circle tried to derive the higher dimension from the lower, a procedure that always leads to new contradictions and antinomies (Tarski, Russell), I take the opposite approach here, in which I derive the lower dimension from the higher. This perspective seems to fail because Tarski, Russell, Wittgenstein, and especially the Vienna Circle have shown that the completeness of the absolute itself is logically contradictory. For this reason, we agree with Hegel in assuming that we can never fully comprehend the Absolute, but only its particular manifestations—otherwise we would be putting ourselves in the place of the Absolute, or even God. Nevertheless, we can understand the Absolute in its particular expressions, as I will show with the modest example of the triangle proof of the combined horizontal and vertical countability of the real numbers, which I developed in rejection of Cantor’s diagonal proof. .展开更多
Grandi’s paradox, which was posed for a real function of the form <span style="white-space:nowrap;">1/(1+ <em>x</em>)</span>, has been resolved and extended to complex valued functio...Grandi’s paradox, which was posed for a real function of the form <span style="white-space:nowrap;">1/(1+ <em>x</em>)</span>, has been resolved and extended to complex valued functions. Resolution of this approximately three-hundred-year-old paradox is accomplished by the use of a consistent truncation approach that can be applied to all the series expansions of Grandi-type functions. Furthermore, a new technique for improving the convergence characteristics of power series with alternating signs is introduced. The technique works by successively averaging a series at different orders of truncation. A sound theoretical justification of the successive averaging method is demonstrated by two different series expansions of the function <span style="white-space:nowrap;">1/(1+ e<sup><em>x</em> </sup>)</span> . Grandi-type complex valued functions such as <span style="white-space:nowrap;">1/(<em>i</em> + <em>x</em>)</span> are expressed as consistently-truncated and convergence-improved forms and Fagnano’s formula is established from the series expansions of these functions. A Grandi-type general complex valued function <img src="Edit_f4efd7cd-6853-4ca4-b4dc-00f0b798c277.png" width="80" height="24" alt="" /> is introduced and expanded to a consistently truncated and successively averaged series. Finally, an unorthodox application of the successive averaging method to polynomials is presented.展开更多
Alzheimer's disease (AD) is the most common neurodegenerative disorder, and its incidence is relatively high among elderly people, affecting about 1-2% of the population between 60-65 years old and rising dramatica...Alzheimer's disease (AD) is the most common neurodegenerative disorder, and its incidence is relatively high among elderly people, affecting about 1-2% of the population between 60-65 years old and rising dramatically (about 30%) in people aged 80 years or older (Selkoe, 2002). Nowadays, considering the increasing mean lifespan of populations in developed countries, the disease is becoming more and more a health concern, and the search for an effective cure has turned into"a real need".展开更多
We present the generalized forms of Parrondo's paradox existing in fractional-order nonlinear systems. The gener- alization is implemented by applying a parameter switching (PS) algorithm to the corresponding initi...We present the generalized forms of Parrondo's paradox existing in fractional-order nonlinear systems. The gener- alization is implemented by applying a parameter switching (PS) algorithm to the corresponding initial value problems associated with the fractional-order nonlinear systems. The PS algorithm switches a system parameter within a specific set of N 〉 2 values when solving the system with some numerical integration method. It is proven that any attractor of the concerned system can be approximated numerically. By replacing the words "winning" and "loosing" in the classical Parrondo's paradox with "order" and "chaos", respectively, the PS algorithm leads to the generalized Parrondo's paradox: chaos1 + chaos2 +..- + chaosN = order and order1 + order2 +.-. + orderN = chaos. Finally, the concept is well demon- strated with the results based on the fractional-order Chen system.展开更多
After a brief reference to the quantum Zeno effect, a quantum Zeno paradox is formulated. Our starting point is the usual version of Time Dependent Perturbation Theory. Although this theory is supposed to account for ...After a brief reference to the quantum Zeno effect, a quantum Zeno paradox is formulated. Our starting point is the usual version of Time Dependent Perturbation Theory. Although this theory is supposed to account for transitions between stationary states, we are led to conclude that such transitions cannot occur. Paraphrasing Zeno, they are nothing but illusions. Two solutions to the paradox are introduced. The first as a straightforward application of the postulates of Orthodox Quantum Mechanics;the other is derived from a Spontaneous Projection Approach to quantum mechanics previously formulated. Similarities and differences between both solutions are highlighted. A comparison between the two versions of quantum mechanics, supporting their corresponding solutions to the paradox, shines a new light on quantum weirdness. It is shown, in particular, that the solution obtained in the framework of Orthodox Quantum Mechanics is defective.展开更多
Catheter-based closure of patent foramen ovale(PFO)is more effective than medical therapy in the prevention of recurrent stroke[1].It is likely that a proportion of patients evaluated for potential transcatheter PFO c...Catheter-based closure of patent foramen ovale(PFO)is more effective than medical therapy in the prevention of recurrent stroke[1].It is likely that a proportion of patients evaluated for potential transcatheter PFO closure has actually different anatomical variants particularly common in the right atrium such as eustachian valve,Chiari network,Thebesian valve and Crista Terminalis.Notably,the eustachian valve may represent an increased risk factor for left circulation thromboembolism beyond that associated with PFO size and shunting.Such patients may benefit the most from percutaneous closure procedure.展开更多
A new mathematical expectation formula with some hypotheses, notions and propositions was given to get rid of the challenge of St. Petersburg paradox and Pascal's wager. Relevant results show that it is very effec...A new mathematical expectation formula with some hypotheses, notions and propositions was given to get rid of the challenge of St. Petersburg paradox and Pascal's wager. Relevant results show that it is very effective to apply the model to solve the expected revenue problems containing random events with low proba-bility but high revenue. This work also provides the probability theory with a more widely applied perspective in group decision-making.展开更多
A black hole is essentially a relativistic as well as a quantum object. Therefore the information paradox of black holes is a consequence of the clash between these two most fundamental theories of modern physics. It ...A black hole is essentially a relativistic as well as a quantum object. Therefore the information paradox of black holes is a consequence of the clash between these two most fundamental theories of modern physics. It is logical to conclude that a resolution of the problem requires some form of a quantum gravity theory. The present work proposes such a resolution using set theory and pointless spacetime geometry.展开更多
A simplified form and some possible theoretical resolutions of the so-called Ehrenfest’s Paradox are described. A relation between physical consequences of this relativistic paradox and charge density ρ of tokamak p...A simplified form and some possible theoretical resolutions of the so-called Ehrenfest’s Paradox are described. A relation between physical consequences of this relativistic paradox and charge density ρ of tokamak plasma is shown. Plasma experiments which could resolve the Ehrenfest’s Paradox are presented.展开更多
By religiously adhering to physics in spacetime and taking the final verdict of N.D. Mermin’s Ithaca interpretation of quantum mechanics seriously, Hardy’s paradox is completely resolved. It is then concluded that l...By religiously adhering to physics in spacetime and taking the final verdict of N.D. Mermin’s Ithaca interpretation of quantum mechanics seriously, Hardy’s paradox is completely resolved. It is then concluded that logical and mathematically consistent physical theories must be put in spacetime related formalism such as noncommutative geometry and E-infinity theory to avoid quantum paradoxes. At a minimum, we should employ the philosophy behind consistent quantum interpretation such as that of the famous Ithaca interpretation of D. Mermin.展开更多
A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power...A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.展开更多
We utilize the topological-geometrical structure imposed by the Heterotic superstring theory on spacetime in conjunction with the K3 Kähler manifold to explain the mysterious nature of dark matter and its cou...We utilize the topological-geometrical structure imposed by the Heterotic superstring theory on spacetime in conjunction with the K3 Kähler manifold to explain the mysterious nature of dark matter and its coupling to the pure dark energy density of the cosmos. The analogous situations in the case of a Kerr black hole as well as the redundant components of the Riemannian tensor are pointed out and the final result was found to be in complete agreement with all previous theoretical ones as well as all recent accurate measurements and cosmic observations. We conclude by commenting briefly on the Cantorian model of Zitterbewegung and the connection between Olbers’s paradox and dark energy.展开更多
This paper has discussed the effective resistivity ellipse and the paradoxical phenomenon of anisotropy. Two cases have been discussed, namely: there are three measuring lines at arbitrary angles with one another and...This paper has discussed the effective resistivity ellipse and the paradoxical phenomenon of anisotropy. Two cases have been discussed, namely: there are three measuring lines at arbitrary angles with one another and there are two mutually perpendicular measuring lines and an additional measurement of the transversal effective resistivity. For these cases, the paper has given the methods for quantitatively calculating the parameters of georesistivity anisotropy. The formulae given include those for calculating the azimuth (of the principal axis of minimum resistivity ρ 1, the average resistivity ( ρ 1ρ 3) 1/2 , (ρ 2ρ 3) 1/2 , and the anisotropy coefficient λ=(ρ 2/ρ 1 ) 1/2 . As a case history, the data observed by the Datong geoelectricity station have been processed with reference to the results of in situ resistivity measurement in media subjected to shear. The results of analysis have led to the following understandings. Before and after the Datong M S6.1 earthquake on October 19, 1989, the abnormal rise of NE trending georesistivity and abnormal fall of NW trending georesistivity observed at the Datong and Yangyuan stations were caused by the pure shear acting on the medium. The major principal compression was in NE direction, which made an acute angle with the strike of the seismic fault plane, and thus there was a greater shear stress but very small normal stress so that the fault was likely to slide but the earthquake was only of moderate magnitude. The states of stress in medium were the same before and after earthquake and therefore the georesistivity precursor was of the same sign as that of co seismic variations.展开更多
How coral reefs with high productivity and biodiversity can flourish in oligotrophic tropical oceans has inspired substantial research on coral reef ecosystems.Increasing evidence shows that similar to water in an oas...How coral reefs with high productivity and biodiversity can flourish in oligotrophic tropical oceans has inspired substantial research on coral reef ecosystems.Increasing evidence shows that similar to water in an oasis in the desert,there are stable nutrient supplies to coral reefs in oligotrophic oceans.Here,with emphasis on the fluxes of organic matter,we summarize at the ecosystem level(1)the multiple input pathways of external nutrients,(2)the storage of nutrients in reef organisms,(3)the efficient retaining and recycling of dissolved and particulate organic matter within coral reef ecosystems,(4)the distinctly high phytoplankton productivity and biomass inside and near oceanic coral reefs,and(5)the export of reef-related organic carbon to adjacent open oceans.These properties enable coral reefs to function as ecological“pumps”for gathering nutrients across ecosystems and space,retaining and recycling nutrients within the ecosystem,supporting high phytoplankton productivity,and exporting organic carbon to adjacent open oceans.Particularly,the high phytoplankton productivity and biomass make waters around coral reefs potential hotspots of carbon export to ocean depths via the biological pump.We demonstrate that organic carbon influx is vital for coral reef ecosystems’carbon budget and carbon export.The concept of the coral reef ecological pump provides a framework to improve the understanding of the functioning of the coral reef ecosystem and its responses to disturbance.Prospects of the coral reef ecological pump in coral reef studies are discussed in changing oceans driven by human activities and global change in the Anthropocene.展开更多
As per Hawking and Bekenstein’s work on black holes, information resides on the surface and there is a limit on it amounting to a bit for every Planck area. It would seem therefore that extra dimensions would logical...As per Hawking and Bekenstein’s work on black holes, information resides on the surface and there is a limit on it amounting to a bit for every Planck area. It would seem therefore that extra dimensions would logically lead to a hyper-surface for a black hole and consequently a reduction of the corresponding information density due to the dilution effect of these additional dimensions. The present paper argues that the counterintuitive opposite of the above is what should be expected. This surprising result is a consequence of a well known theorem on measure concentration due to I. Dvoretzky.展开更多
文摘The coronavirus disease 2019(COVID-19)mortality rate in 55 African countries is almost 4.5 times lower than in the coronavirus disease 2019(COVID-19)despite Africa having over 4.2 times more people.This mortality paradox is also evident when comparing Nigeria,a heavily populated,poorly vaccinated and weakly mandated country to Israel,a small,highly vaccinated and strictly mandated country.Nigeria has almost 4 times lower COVID mortality than Israel.In this Field of Vision perspective,I explain how this paradox has evolved drawing upon my academic,clinical and social experience.Since April 2020,I’ve developed and been using the Egyptian immune-modulatory Kelleni’s protocol to manage COVID-19 patients including pediatric,geriatric,pregnant,immune-compromised and other individuals suffering from multiple comorbidities.It’s unfortunate that severe acute respiratory syndrome coronavirus 2 is still evolving accompanied by more deaths.However in Africa,we’ve been able to live without anxiety or mandates throughout the pandemic because we trust science and adopted early treatment using safe,and effective repurposed drugs that have saved the majority of COVID-19 patients.This article represents an African and Egyptian tale of honor.
文摘Olbers’s paradox, known as the dark night paradox, is an argument in astrophysics that the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. Big-Bang theory was used to partially explain this paradox, while introducing new problems. Hereby, we propose a better theory, named Sun Matters Theory, to explain this paradox. Moreover, this unique theory supports and extended the Einstein’s static universe model proposed by Albert Einstein in 1917. Further, we proposed our new universe model, “Sun Model of Universe”. Based on the new model and novel theory, we generated innovative field equation by upgrading Einstein’s Field Equation through adding back the cosmological constant, introducing a new variable and modifying the gravitationally-related concepts. According to the Sun Model of Universe, the dark matter and dark energy comprise the so-called “Sun Matters”. The observed phenomenon like the red shift is explained as due to the interaction of ordinary light with Sun Matters leading to its energy and frequency decrease. In Sun Model, our big universe consists of many universes with ordinary matter at the core mixed and surrounded with the Sun Matters. In those universes, the laws of physics may be completely or partially different from that of our ordinary universe with parallel civilizations. The darkness of night can be easily explained as resulting from the interaction of light with the Sun Matters leading to the sharp decrease in the light intensity. Sun Matters also scatter the light from a star, which makes it shining as observed by Hubble. Further, there is a kind of Sun Matters named “Sun Waters”, surrounding every starts. When lights pass by the sun, the Sun Waters deflect the lights to bend the light path. According to the Sun Model, it is the light bent not the space bent that was proposed in the theory of relativities.
文摘In contrast to the solutions of applied mathematics to Zeno’s paradoxes, I focus on the concept of motion and show that, by distinguishing two different forms of motion, Zeno’s apparent paradoxes are not paradoxical at all. Zeno’s paradoxes indirectly prove that distances are not composed of extensionless points and, in general, that a higher dimension cannot be completely composed of lower ones. Conversely, lower dimensions can be understood as special cases of higher dimensions. To illustrate this approach, I consider Cantor’s only apparent proof that the real numbers are uncountable. However, his widely accepted indirect proof has the disadvantage that it depends on whether there is another way to make the real numbers countable. Cantor rightly assumes that there can be no smallest number between 0 and 1, and therefore no beginning of counting. For this reason he arbitrarily lists the real numbers in order to show with his diagonal method that this list can never be complete. The situation is different if we start with the largest number between 0 and 1 (0.999…) and use the method of an inverted triangle, which can be understood as a special fractal form. Here we can construct a vertical and a horizontal stratification with which it is actually possible to construct all real numbers between 0 and 1 without exception. Each column is infinite, and each number in that column is the starting point of a new triangle, while each row is finite. Even in a simple sine curve, we experience finiteness with respect to the y-axis and infinity with respect to the x-axis. The first parts of this article show that Zeno’s assumptions contradict the concept of motion as such, so it is not surprising that this misconstruction leads to contradictions. In the last part, I discuss Cantor’s diagonal method and explain the method of an inverted triangle that is internally structured like a fractal by repeating this inverted triangle at each column. The consequence is that we encounter two very different methods of counting. Vertically it is continuous, horizontally it is discrete. While Frege, Tarski, Cantor, Gödel and the Vienna Circle tried to derive the higher dimension from the lower, a procedure that always leads to new contradictions and antinomies (Tarski, Russell), I take the opposite approach here, in which I derive the lower dimension from the higher. This perspective seems to fail because Tarski, Russell, Wittgenstein, and especially the Vienna Circle have shown that the completeness of the absolute itself is logically contradictory. For this reason, we agree with Hegel in assuming that we can never fully comprehend the Absolute, but only its particular manifestations—otherwise we would be putting ourselves in the place of the Absolute, or even God. Nevertheless, we can understand the Absolute in its particular expressions, as I will show with the modest example of the triangle proof of the combined horizontal and vertical countability of the real numbers, which I developed in rejection of Cantor’s diagonal proof. .
文摘Grandi’s paradox, which was posed for a real function of the form <span style="white-space:nowrap;">1/(1+ <em>x</em>)</span>, has been resolved and extended to complex valued functions. Resolution of this approximately three-hundred-year-old paradox is accomplished by the use of a consistent truncation approach that can be applied to all the series expansions of Grandi-type functions. Furthermore, a new technique for improving the convergence characteristics of power series with alternating signs is introduced. The technique works by successively averaging a series at different orders of truncation. A sound theoretical justification of the successive averaging method is demonstrated by two different series expansions of the function <span style="white-space:nowrap;">1/(1+ e<sup><em>x</em> </sup>)</span> . Grandi-type complex valued functions such as <span style="white-space:nowrap;">1/(<em>i</em> + <em>x</em>)</span> are expressed as consistently-truncated and convergence-improved forms and Fagnano’s formula is established from the series expansions of these functions. A Grandi-type general complex valued function <img src="Edit_f4efd7cd-6853-4ca4-b4dc-00f0b798c277.png" width="80" height="24" alt="" /> is introduced and expanded to a consistently truncated and successively averaged series. Finally, an unorthodox application of the successive averaging method to polynomials is presented.
文摘Alzheimer's disease (AD) is the most common neurodegenerative disorder, and its incidence is relatively high among elderly people, affecting about 1-2% of the population between 60-65 years old and rising dramatically (about 30%) in people aged 80 years or older (Selkoe, 2002). Nowadays, considering the increasing mean lifespan of populations in developed countries, the disease is becoming more and more a health concern, and the search for an effective cure has turned into"a real need".
文摘We present the generalized forms of Parrondo's paradox existing in fractional-order nonlinear systems. The gener- alization is implemented by applying a parameter switching (PS) algorithm to the corresponding initial value problems associated with the fractional-order nonlinear systems. The PS algorithm switches a system parameter within a specific set of N 〉 2 values when solving the system with some numerical integration method. It is proven that any attractor of the concerned system can be approximated numerically. By replacing the words "winning" and "loosing" in the classical Parrondo's paradox with "order" and "chaos", respectively, the PS algorithm leads to the generalized Parrondo's paradox: chaos1 + chaos2 +..- + chaosN = order and order1 + order2 +.-. + orderN = chaos. Finally, the concept is well demon- strated with the results based on the fractional-order Chen system.
文摘After a brief reference to the quantum Zeno effect, a quantum Zeno paradox is formulated. Our starting point is the usual version of Time Dependent Perturbation Theory. Although this theory is supposed to account for transitions between stationary states, we are led to conclude that such transitions cannot occur. Paraphrasing Zeno, they are nothing but illusions. Two solutions to the paradox are introduced. The first as a straightforward application of the postulates of Orthodox Quantum Mechanics;the other is derived from a Spontaneous Projection Approach to quantum mechanics previously formulated. Similarities and differences between both solutions are highlighted. A comparison between the two versions of quantum mechanics, supporting their corresponding solutions to the paradox, shines a new light on quantum weirdness. It is shown, in particular, that the solution obtained in the framework of Orthodox Quantum Mechanics is defective.
文摘Catheter-based closure of patent foramen ovale(PFO)is more effective than medical therapy in the prevention of recurrent stroke[1].It is likely that a proportion of patients evaluated for potential transcatheter PFO closure has actually different anatomical variants particularly common in the right atrium such as eustachian valve,Chiari network,Thebesian valve and Crista Terminalis.Notably,the eustachian valve may represent an increased risk factor for left circulation thromboembolism beyond that associated with PFO size and shunting.Such patients may benefit the most from percutaneous closure procedure.
基金the Scientific Research Foundation of Hunan Education Department (No. 05C185)
文摘A new mathematical expectation formula with some hypotheses, notions and propositions was given to get rid of the challenge of St. Petersburg paradox and Pascal's wager. Relevant results show that it is very effective to apply the model to solve the expected revenue problems containing random events with low proba-bility but high revenue. This work also provides the probability theory with a more widely applied perspective in group decision-making.
文摘A black hole is essentially a relativistic as well as a quantum object. Therefore the information paradox of black holes is a consequence of the clash between these two most fundamental theories of modern physics. It is logical to conclude that a resolution of the problem requires some form of a quantum gravity theory. The present work proposes such a resolution using set theory and pointless spacetime geometry.
文摘A simplified form and some possible theoretical resolutions of the so-called Ehrenfest’s Paradox are described. A relation between physical consequences of this relativistic paradox and charge density ρ of tokamak plasma is shown. Plasma experiments which could resolve the Ehrenfest’s Paradox are presented.
文摘By religiously adhering to physics in spacetime and taking the final verdict of N.D. Mermin’s Ithaca interpretation of quantum mechanics seriously, Hardy’s paradox is completely resolved. It is then concluded that logical and mathematically consistent physical theories must be put in spacetime related formalism such as noncommutative geometry and E-infinity theory to avoid quantum paradoxes. At a minimum, we should employ the philosophy behind consistent quantum interpretation such as that of the famous Ithaca interpretation of D. Mermin.
文摘A generalized form of the error function, Gp(x)=pΓ(1/p)∫0xe−tpdt, which is directly associated with the gamma function, is evaluated for arbitrary real values of p>1and 0x≤+∞by employing a fast-converging power series expansion developed in resolving the so-called Grandi’s paradox. Comparisons with accurate tabulated values for well-known cases such as the error function are presented using the expansions truncated at various orders.
文摘We utilize the topological-geometrical structure imposed by the Heterotic superstring theory on spacetime in conjunction with the K3 Kähler manifold to explain the mysterious nature of dark matter and its coupling to the pure dark energy density of the cosmos. The analogous situations in the case of a Kerr black hole as well as the redundant components of the Riemannian tensor are pointed out and the final result was found to be in complete agreement with all previous theoretical ones as well as all recent accurate measurements and cosmic observations. We conclude by commenting briefly on the Cantorian model of Zitterbewegung and the connection between Olbers’s paradox and dark energy.
文摘This paper has discussed the effective resistivity ellipse and the paradoxical phenomenon of anisotropy. Two cases have been discussed, namely: there are three measuring lines at arbitrary angles with one another and there are two mutually perpendicular measuring lines and an additional measurement of the transversal effective resistivity. For these cases, the paper has given the methods for quantitatively calculating the parameters of georesistivity anisotropy. The formulae given include those for calculating the azimuth (of the principal axis of minimum resistivity ρ 1, the average resistivity ( ρ 1ρ 3) 1/2 , (ρ 2ρ 3) 1/2 , and the anisotropy coefficient λ=(ρ 2/ρ 1 ) 1/2 . As a case history, the data observed by the Datong geoelectricity station have been processed with reference to the results of in situ resistivity measurement in media subjected to shear. The results of analysis have led to the following understandings. Before and after the Datong M S6.1 earthquake on October 19, 1989, the abnormal rise of NE trending georesistivity and abnormal fall of NW trending georesistivity observed at the Datong and Yangyuan stations were caused by the pure shear acting on the medium. The major principal compression was in NE direction, which made an acute angle with the strike of the seismic fault plane, and thus there was a greater shear stress but very small normal stress so that the fault was likely to slide but the earthquake was only of moderate magnitude. The states of stress in medium were the same before and after earthquake and therefore the georesistivity precursor was of the same sign as that of co seismic variations.
基金The Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No.GML2019ZD0405the National Natural Science Foundation of China under contract Nos41506150 and 41130855+3 种基金the Guangdong Basic and Applied Basic Research Foundation under contract No.2019A1515011645the National Science and Technology Basic Work Program of the Ministry of Science and Technology of China under contract No.2015FY110600the Science and Technology Planning Project of Guangdong Province,China under contract No.2020B1212060058the Development Fund of South China Sea Institute of Oceanology of the Chinese Academy of Sciences under contract No.SCSIO202204。
文摘How coral reefs with high productivity and biodiversity can flourish in oligotrophic tropical oceans has inspired substantial research on coral reef ecosystems.Increasing evidence shows that similar to water in an oasis in the desert,there are stable nutrient supplies to coral reefs in oligotrophic oceans.Here,with emphasis on the fluxes of organic matter,we summarize at the ecosystem level(1)the multiple input pathways of external nutrients,(2)the storage of nutrients in reef organisms,(3)the efficient retaining and recycling of dissolved and particulate organic matter within coral reef ecosystems,(4)the distinctly high phytoplankton productivity and biomass inside and near oceanic coral reefs,and(5)the export of reef-related organic carbon to adjacent open oceans.These properties enable coral reefs to function as ecological“pumps”for gathering nutrients across ecosystems and space,retaining and recycling nutrients within the ecosystem,supporting high phytoplankton productivity,and exporting organic carbon to adjacent open oceans.Particularly,the high phytoplankton productivity and biomass make waters around coral reefs potential hotspots of carbon export to ocean depths via the biological pump.We demonstrate that organic carbon influx is vital for coral reef ecosystems’carbon budget and carbon export.The concept of the coral reef ecological pump provides a framework to improve the understanding of the functioning of the coral reef ecosystem and its responses to disturbance.Prospects of the coral reef ecological pump in coral reef studies are discussed in changing oceans driven by human activities and global change in the Anthropocene.
文摘As per Hawking and Bekenstein’s work on black holes, information resides on the surface and there is a limit on it amounting to a bit for every Planck area. It would seem therefore that extra dimensions would logically lead to a hyper-surface for a black hole and consequently a reduction of the corresponding information density due to the dilution effect of these additional dimensions. The present paper argues that the counterintuitive opposite of the above is what should be expected. This surprising result is a consequence of a well known theorem on measure concentration due to I. Dvoretzky.