Toluene pretreatment caused many activated toluene species existing on the surface of zeolite HZSM-5, by which the activity of sample was increased. Moreover, variation in the surface Si+/Al+ ratio of HZSM-5 was sensi...Toluene pretreatment caused many activated toluene species existing on the surface of zeolite HZSM-5, by which the activity of sample was increased. Moreover, variation in the surface Si+/Al+ ratio of HZSM-5 was sensitively detected by FABMS.展开更多
High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,...High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.展开更多
Since paraffins catalytic cracking was of significant importance to light olefins and aromatics production,this work was intended to gain insights into the feature and model of coke formation and catalyst deactivation...Since paraffins catalytic cracking was of significant importance to light olefins and aromatics production,this work was intended to gain insights into the feature and model of coke formation and catalyst deactivation in n-heptane catalytic cracking over HZSM-5 zeolites. 18 tests of n-heptane catalytic cracking were designed and carried out over HZSM-5 zeolites in a wide range of operating conditions. A particular attention was paid to the measurement of the conversion, product distribution, coke content, and the porosity and acidity of the fresh and spent HZSM-5 zeolites. It was found that alkene and aromatic promoted coke formation, and it reduced the pore volume and acid site of HZSM-5 zeolites, tailoring its performance in n-heptane catalytic cracking. The specific relationship between HZSM-5 zeolites, n-heptane conversion, product distribution and coke formation was quantitively characterized by the exponential and linear function. Based on the reaction network, the coupled scheme of coke formation and catalyst deactivation were specified for n-heptane catalytic cracking. The dual-model was proposed for the process simulation of n-heptane catalytic cracking over HZSM-5 zeolites. It predicted not only the conversion and product distribution but also coke content with the acceptable errors.展开更多
Various metal-modified ZSM-5 zeolite adsorbents prepared by the impregnation method were applied to the removal of organic chlorides from model naphtha.The adsorption performance and regeneration stability were invest...Various metal-modified ZSM-5 zeolite adsorbents prepared by the impregnation method were applied to the removal of organic chlorides from model naphtha.The adsorption performance and regeneration stability were investigated by static adsorption experiments.The morphologies,structural features,and physicochemical properties of the adsorbents were characterized by X-ray diffraction,Brunauer-Emmett-Teller analysis,NH3 temperature-programmed desorption,scanning electron microscopy,transmission electron microscopy,and pyridine adsorption infrared spectroscopy.The Mg/ZSM-5 zeolite adsorbent possessed a relatively high specific surface area and good metal dispersion and exhibited the best dechlorination and regeneration performance.The characterization results revealed that introduction of the metal exerted a significant influence on the acidic properties of the catalyst surface.A decrease in the ratio of Brønsted acidic sites to Lewis acidic sites and an increase in the amount of moderately acidic sites were confirmed to be responsible for the excellent adsorption performance of the Mg-modified ZSM-5 zeolite.Furthermore,the Langmuir adsorption isotherm model was applied to study the adsorption equilibrium and thermodynamics of the Mg/ZSM-5 adsorbent under mild conditions.The results revealed that the removal of 1,2-dichloroethane by the Mg/ZSM-5 adsorbent was endothermic,spontaneous,disordered,and primarily involved physical adsorption.展开更多
The catalytic conversion of polystyrene (PS) was studied in the presence of the materials type HZSM-5, CeO<sub>2</sub>, 10% CeO<sub>2</sub>/HZSM-5 and 20% CeO<sub>2</sub>/HZSM-5, wh...The catalytic conversion of polystyrene (PS) was studied in the presence of the materials type HZSM-5, CeO<sub>2</sub>, 10% CeO<sub>2</sub>/HZSM-5 and 20% CeO<sub>2</sub>/HZSM-5, which were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen adsorption at 77K. The catalytic tests were performed via thermogravimetric analysis (TG) at heating rates of 5, 10 and 20˚C min<sup>−1</sup> in a temperature range from 30˚C to 900˚C. For the tests, a ratio of 30% by mass of each catalytic material mixed with PS was used and the activation energy of the degradation process was determined by the Vyazovkin method. The obtained results showed that the addition of the catalyst to the PS in general reduced its degradation temperature. The 10% CeO<sub>2</sub>/HZSM-5 catalyst showed greater efficiency, as it resulted in lower activation energy for PS degradation. Thus, the combination of CeO<sub>2</sub> with HZSM-5 resulted in materials with potential for application in the catalytic degradation of polystyrene and the results indicate that the production of a composite material can be a good strategy to generate an increase in catalytic activity and a decrease in energy process activation.展开更多
The effects of rare earth(RE)on the structure,acidity,and catalytic performance of HZSM-5 zeolite were investigated.A series of RE/HZSM-5 catalysts,containing 7.54% RE(RE=La,Ce,Pr,Nd,Sm,Eu or Gd),were prepared by ...The effects of rare earth(RE)on the structure,acidity,and catalytic performance of HZSM-5 zeolite were investigated.A series of RE/HZSM-5 catalysts,containing 7.54% RE(RE=La,Ce,Pr,Nd,Sm,Eu or Gd),were prepared by the impregnation of the ZSM-5 type zeolites(Si/Al=64:1)with the corresponding RE nitrate aqueous solutions.The catalysts were characterized by means of FT-IR,UV-Vis,NH3-TPD,and IR spectroscopy of adsorbed pyridine.The catalytic performances of the RE/HZSM-5 for the catalytic cracking of mixed butane to light olefins were also measured with a fixed bed microreactor.The results revealed that the addition of light rare earth metal on the HZSM-5 catalyst greatly enhanced the selectivity to olefins,especially to propylene,thus increasing the total yield of olefins in the catalytic cracking of butane.Among the RE-modified HZSM-5 samples,Ce/HZSM-5 gave the highest yield of total olefins,and Nd/HZSM-5 gave the highest yield of propene at a reaction temperature of 600℃.The presence of rare earth metal on the HZSM-5 sample,not only modified the acidic properties of HZSM-5 including the amount of acid sites and acid type,that is,the ratio of L/B(Lewis acid/Brnsted acid),but also altered the basic properties of it,which in turn promoted the catalytic performance of HZSM-5 for the catalytic cracking of butane.展开更多
The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total ...The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total acid amounts, their density and the amount of B-type acid of HZSM-5 catalysts rapidly decreased, while the amounts of L-type acid had almost no change and thus the ratio of L/B was obviously enhanced with the increase of calcination temperature (excluding 800 ℃). The catalytic performances of modified HZSM-5 catalysts for the cracking of n-butane were also investigated. The main properties of these catalysts were characterized by means of XRD, N2 adsorption at low temperature, NH3-TPD, FTIR of pyridine adsorption and BET surface area measurements. The results showed that HZSM-5 zeolite pretreated at 800 ℃ had very low catalytic activity for n-butane cracking. In the calcination temperature range of 500-700 ℃, the total selectivity to olefins, propylene and butene were increased with the increase of calcination temperature, while, the selectivity for arene decreased with the calcination temperature. The HZSM-5 zeolite calcined at 700 ℃ produced light olefins with high yield, at the reaction temperature of 650 ℃ the yields of total olefins and ethylene were 52.8% and 29.4%, respectively. Besides, the more important role is that high calcination temperature treatment improved the duration stability of HZSM-5 zeolites. The effect of calcination temperature on the physico-chemical properties and catalytic performance of HZSM-5 for cracking of n-butane was explored. It was found that the calcination temperature had large effects on the surface area, crystallinity and acid properties of HZSM-5 catalyst, which further affected the catalytic performance for n-butane cracking.展开更多
HZSM-5 zeolites with the micro-mesopore hierarchical porosity have been prepared by the post-synthesis of alkali-treatment, and their thermal and hydrothermal stabilities were studied using DTA, XRD, and NH3-TPD chara...HZSM-5 zeolites with the micro-mesopore hierarchical porosity have been prepared by the post-synthesis of alkali-treatment, and their thermal and hydrothermal stabilities were studied using DTA, XRD, and NH3-TPD characterization techniques. Compared to the unmodified zeolite, the thermal and hydrothermal stabilities of the alkali-treated ZSM-5 zeolites were slightly deteriorated because of the introduction of mesopores caused by the desilication. Nevertheless, the alkali-treated zeolite framework could be maintained until the temperature increased to 1175 ℃.展开更多
文摘Toluene pretreatment caused many activated toluene species existing on the surface of zeolite HZSM-5, by which the activity of sample was increased. Moreover, variation in the surface Si+/Al+ ratio of HZSM-5 was sensitively detected by FABMS.
基金the financial support from the National Natural Science Foundation of China(21908010)Jilin Provincial Department of Science and Technology(20220101089JC)the Education Department of Jilin Province(JJKH20220694KJ)。
文摘High-temperature treatment is key to the preparation of zeolite catalysts.Herein,the effects of hightemperature treatment on the property and performance of HZSM-5 zeolites were studied in this work.X-Ray diffraction,N2physisorption,27Al magic angle spinning nuclear magnetic resonance(MAS NMR),and temperature-programmed desorption of ammonia results indicated that the hightemperature treatment at 650℃ hardly affected the inherent crystal and texture of HZSM-5zeolites but facilitated the conversion of framework Al to extra-framework Al,reducing the acid site and enhancing the acid strength.Moreover,the high-temperature treatment improved the performance of HZSM-5 zeolites in n-heptane catalytic cracking,promoting the conversion and light olefins yield while inhibiting coke formation.Based on the kinetic and mechanism analysis,the improvement of HZSM-5 performance caused by high-temperature treatment has been attributed to the formation of extra-framework Al,which enhanced the acid strength,facilitated the bimolecular reaction,and promoted the entropy change to overcome a higher energy barrier in n-heptane catalytic cracking.
基金the financial support from the National Natural Science Foundation of China (21908010)the Education Department of Jilin Province (JJKH20220694KJ)。
文摘Since paraffins catalytic cracking was of significant importance to light olefins and aromatics production,this work was intended to gain insights into the feature and model of coke formation and catalyst deactivation in n-heptane catalytic cracking over HZSM-5 zeolites. 18 tests of n-heptane catalytic cracking were designed and carried out over HZSM-5 zeolites in a wide range of operating conditions. A particular attention was paid to the measurement of the conversion, product distribution, coke content, and the porosity and acidity of the fresh and spent HZSM-5 zeolites. It was found that alkene and aromatic promoted coke formation, and it reduced the pore volume and acid site of HZSM-5 zeolites, tailoring its performance in n-heptane catalytic cracking. The specific relationship between HZSM-5 zeolites, n-heptane conversion, product distribution and coke formation was quantitively characterized by the exponential and linear function. Based on the reaction network, the coupled scheme of coke formation and catalyst deactivation were specified for n-heptane catalytic cracking. The dual-model was proposed for the process simulation of n-heptane catalytic cracking over HZSM-5 zeolites. It predicted not only the conversion and product distribution but also coke content with the acceptable errors.
基金This work was financially supported by the Natural Science Foundation of Shandong Province(ZR2021MB134 and ZR2022MB019)the National Natural Science Foundation of China(22008131)+1 种基金the Talent Fund for Province and Ministry Co-construction Collaborative Innovation Center of Eco-chemical Engineering(STHGYX2220)the Opening Fund of State Key Laboratory of Heavy Oil Processing(SKLOP202002002).
文摘Various metal-modified ZSM-5 zeolite adsorbents prepared by the impregnation method were applied to the removal of organic chlorides from model naphtha.The adsorption performance and regeneration stability were investigated by static adsorption experiments.The morphologies,structural features,and physicochemical properties of the adsorbents were characterized by X-ray diffraction,Brunauer-Emmett-Teller analysis,NH3 temperature-programmed desorption,scanning electron microscopy,transmission electron microscopy,and pyridine adsorption infrared spectroscopy.The Mg/ZSM-5 zeolite adsorbent possessed a relatively high specific surface area and good metal dispersion and exhibited the best dechlorination and regeneration performance.The characterization results revealed that introduction of the metal exerted a significant influence on the acidic properties of the catalyst surface.A decrease in the ratio of Brønsted acidic sites to Lewis acidic sites and an increase in the amount of moderately acidic sites were confirmed to be responsible for the excellent adsorption performance of the Mg-modified ZSM-5 zeolite.Furthermore,the Langmuir adsorption isotherm model was applied to study the adsorption equilibrium and thermodynamics of the Mg/ZSM-5 adsorbent under mild conditions.The results revealed that the removal of 1,2-dichloroethane by the Mg/ZSM-5 adsorbent was endothermic,spontaneous,disordered,and primarily involved physical adsorption.
文摘The catalytic conversion of polystyrene (PS) was studied in the presence of the materials type HZSM-5, CeO<sub>2</sub>, 10% CeO<sub>2</sub>/HZSM-5 and 20% CeO<sub>2</sub>/HZSM-5, which were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen adsorption at 77K. The catalytic tests were performed via thermogravimetric analysis (TG) at heating rates of 5, 10 and 20˚C min<sup>−1</sup> in a temperature range from 30˚C to 900˚C. For the tests, a ratio of 30% by mass of each catalytic material mixed with PS was used and the activation energy of the degradation process was determined by the Vyazovkin method. The obtained results showed that the addition of the catalyst to the PS in general reduced its degradation temperature. The 10% CeO<sub>2</sub>/HZSM-5 catalyst showed greater efficiency, as it resulted in lower activation energy for PS degradation. Thus, the combination of CeO<sub>2</sub> with HZSM-5 resulted in materials with potential for application in the catalytic degradation of polystyrene and the results indicate that the production of a composite material can be a good strategy to generate an increase in catalytic activity and a decrease in energy process activation.
基金Project supported by the National Basic Research Program of China(2004CB2178062005CB221402)+1 种基金the National NaturalScience Foundation of China(20373043)Young Scientists Innovation Foundation of CNPC(04E7025)
文摘The effects of rare earth(RE)on the structure,acidity,and catalytic performance of HZSM-5 zeolite were investigated.A series of RE/HZSM-5 catalysts,containing 7.54% RE(RE=La,Ce,Pr,Nd,Sm,Eu or Gd),were prepared by the impregnation of the ZSM-5 type zeolites(Si/Al=64:1)with the corresponding RE nitrate aqueous solutions.The catalysts were characterized by means of FT-IR,UV-Vis,NH3-TPD,and IR spectroscopy of adsorbed pyridine.The catalytic performances of the RE/HZSM-5 for the catalytic cracking of mixed butane to light olefins were also measured with a fixed bed microreactor.The results revealed that the addition of light rare earth metal on the HZSM-5 catalyst greatly enhanced the selectivity to olefins,especially to propylene,thus increasing the total yield of olefins in the catalytic cracking of butane.Among the RE-modified HZSM-5 samples,Ce/HZSM-5 gave the highest yield of total olefins,and Nd/HZSM-5 gave the highest yield of propene at a reaction temperature of 600℃.The presence of rare earth metal on the HZSM-5 sample,not only modified the acidic properties of HZSM-5 including the amount of acid sites and acid type,that is,the ratio of L/B(Lewis acid/Brnsted acid),but also altered the basic properties of it,which in turn promoted the catalytic performance of HZSM-5 for the catalytic cracking of butane.
基金The authors would like to thank the financial support from the National Basic Research Program of China fgrant No.2004CB 217806)the National Natural Science Foundation of China (Grant No.20373043) the Scientific Research Key Foundation for the Returned Overseas Chinese Scholars of State Education Ministry.
文摘The acidic modulations of a series of HZSM-5 catalysts were successfully made by calcination at different treatment temperatures, i.e. 500, 600, 650, 700 and 800 ℃, respectively. The results indicated that the total acid amounts, their density and the amount of B-type acid of HZSM-5 catalysts rapidly decreased, while the amounts of L-type acid had almost no change and thus the ratio of L/B was obviously enhanced with the increase of calcination temperature (excluding 800 ℃). The catalytic performances of modified HZSM-5 catalysts for the cracking of n-butane were also investigated. The main properties of these catalysts were characterized by means of XRD, N2 adsorption at low temperature, NH3-TPD, FTIR of pyridine adsorption and BET surface area measurements. The results showed that HZSM-5 zeolite pretreated at 800 ℃ had very low catalytic activity for n-butane cracking. In the calcination temperature range of 500-700 ℃, the total selectivity to olefins, propylene and butene were increased with the increase of calcination temperature, while, the selectivity for arene decreased with the calcination temperature. The HZSM-5 zeolite calcined at 700 ℃ produced light olefins with high yield, at the reaction temperature of 650 ℃ the yields of total olefins and ethylene were 52.8% and 29.4%, respectively. Besides, the more important role is that high calcination temperature treatment improved the duration stability of HZSM-5 zeolites. The effect of calcination temperature on the physico-chemical properties and catalytic performance of HZSM-5 for cracking of n-butane was explored. It was found that the calcination temperature had large effects on the surface area, crystallinity and acid properties of HZSM-5 catalyst, which further affected the catalytic performance for n-butane cracking.
基金the National Key Project for Basic Research of China(973 Project)(No.2005CB221403)the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant:DICP K2007D3)
文摘HZSM-5 zeolites with the micro-mesopore hierarchical porosity have been prepared by the post-synthesis of alkali-treatment, and their thermal and hydrothermal stabilities were studied using DTA, XRD, and NH3-TPD characterization techniques. Compared to the unmodified zeolite, the thermal and hydrothermal stabilities of the alkali-treated ZSM-5 zeolites were slightly deteriorated because of the introduction of mesopores caused by the desilication. Nevertheless, the alkali-treated zeolite framework could be maintained until the temperature increased to 1175 ℃.