期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Blur Image Edge to Enhance Zernike Moments for Object Recognition 被引量:1
1
作者 Chihying Gwo Anwen Deng 《Journal of Computer and Communications》 2016年第15期79-91,共13页
Zernike moments (ZMs) are a set of orthogonal moments which have been successfully used in the fields of image processing and pattern recognition. A combination of edge blurring with ZMs computation was introduced. In... Zernike moments (ZMs) are a set of orthogonal moments which have been successfully used in the fields of image processing and pattern recognition. A combination of edge blurring with ZMs computation was introduced. In this study, several kinds of artificial binary stripe images were used to investigate the effects of edge blurring on the absolute mean error of reconstructed image from high-order ZMs. After the blurring process, the reconstruction errors were increased dramatically at edge pixels, but decreased on non-edge pixels. The experimental results demonstrated that 2-pixel blurring approach provided better performance for reducing reconstruction error. Finally, a template matching between two real images was simulated to illustrate the effectiveness of the proposed method. 展开更多
关键词 zernike moments Pattern Recognition High-Order ZMs Template Matching
下载PDF
Pseudo Zernike Moment and Deep Stacked Sparse Autoencoder for COVID-19 Diagnosis
2
作者 Yu-Dong Zhang Muhammad Attique Khan +1 位作者 Ziquan Zhu Shui-Hua Wang 《Computers, Materials & Continua》 SCIE EI 2021年第12期3145-3162,共18页
(Aim)COVID-19 is an ongoing infectious disease.It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021.Traditional computer vision methods have achieved promising results on the automatic s... (Aim)COVID-19 is an ongoing infectious disease.It has caused more than 107.45 m confirmed cases and 2.35 m deaths till 11/Feb/2021.Traditional computer vision methods have achieved promising results on the automatic smart diagnosis.(Method)This study aims to propose a novel deep learning method that can obtain better performance.We use the pseudo-Zernike moment(PZM),derived from Zernike moment,as the extracted features.Two settings are introducing:(i)image plane over unit circle;and(ii)image plane inside the unit circle.Afterward,we use a deep-stacked sparse autoencoder(DSSAE)as the classifier.Besides,multiple-way data augmentation is chosen to overcome overfitting.The multiple-way data augmentation is based on Gaussian noise,salt-and-pepper noise,speckle noise,horizontal and vertical shear,rotation,Gamma correction,random translation and scaling.(Results)10 runs of 10-fold cross validation shows that our PZM-DSSAE method achieves a sensitivity of 92.06%±1.54%,a specificity of 92.56%±1.06%,a precision of 92.53%±1.03%,and an accuracy of 92.31%±1.08%.Its F1 score,MCC,and FMI arrive at 92.29%±1.10%,84.64%±2.15%,and 92.29%±1.10%,respectively.The AUC of our model is 0.9576.(Conclusion)We demonstrate“image plane over unit circle”can get better results than“image plane inside a unit circle.”Besides,this proposed PZM-DSSAE model is better than eight state-of-the-art approaches. 展开更多
关键词 Pseudo zernike moment stacked sparse autoencoder deep learning COVID-19 multiple-way data augmentation medical image analysis
下载PDF
Osteosarcoma Segmentation in MRI Based on Zernike Moment and SVM
3
作者 CHEN Chun-xiao ZHANG Dan +3 位作者 LI Ning QIAN Xiao-jun WU Shu-jia Gail Sudlow 《Chinese Journal of Biomedical Engineering(English Edition)》 2013年第2期70-78,共9页
Osteosarcoma is primary malignant neoplasms derived from cells of mesenchymal origin, and often has distinct phenotypes at different stages. The location of tumor and reaction zone can be identified by an expert in ma... Osteosarcoma is primary malignant neoplasms derived from cells of mesenchymal origin, and often has distinct phenotypes at different stages. The location of tumor and reaction zone can be identified by an expert in magnetic resonance imaging (MRI), with MRI being one of the choices for evaluating the extent of osteosarcoma. However, it is still a challenge to automatically extract tumor from its surrounding tissues because of their low intensity differences in MRI. We investigated an approach based on Zernike moment and support vector machine (SVM) for osteosarcoma segmentation in T1-weighted image (TIWI). Firstly, the different order moments around each pixel are calculated in small windows. Secondly, the grayscale and the module values of different order moments are used as a texture feature vector which is then used as the training set for SVM. Finally, an SVM classifier is trained based on this set of features to identify the osteosarcoma, and the segmented tumor tissue is rendered in 3D by the ray casting algorithm based on graphics processing unit (GPU). The performance of the method is validated on T1WI, showing that the segmentation method has a high similarity index with the expert's manual segmentation. 展开更多
关键词 OSTEOSARCOMA zernike moment support vector machine (SVM) SEGMENTATION
下载PDF
A Theoretical Comparison among Recursive Algorithms for Fast Computation of Zernike Moments Using the Concept of Time Complexity
4
作者 Nasrin Bastani Alireza Vard +1 位作者 Mehdi Jabalameli Vahid Bastani 《American Journal of Computational Mathematics》 2021年第4期304-326,共23页
Zernike polynomials have been used in different fields such as optics, astronomy, and digital image analysis for many years. To form these polynomials, Zernike moments are essential to be determined. One of the main i... Zernike polynomials have been used in different fields such as optics, astronomy, and digital image analysis for many years. To form these polynomials, Zernike moments are essential to be determined. One of the main issues in realizing the moments is using factorial terms in their equation which cause</span><span style="font-size:10.0pt;font-family:"">s</span><span style="font-size:10.0pt;font-family:""> higher time complexity. As a solution, several methods have been presented to reduce the time complexity of these polynomials in recent years. The purpose of this research is to study several methods among the most popular recursive methods for fast Zernike computation and compare them <span>together by a global theoretical evaluation system called worst-case time co</span><span>mplexity. In this study, we have analyzed the selected algorithms and calculate</span>d the worst-case time complexity for each one. After that, the results are represented and explained and finally, a conclusion has been made by comparing th</span><span style="font-size:10.0pt;font-family:"">ese</span><span style="font-size:10.0pt;font-family:""> criteria among the studied algorithms. According to time complexity, we have observed that although some algorithms </span><span style="font-size:10.0pt;font-family:"">such </span><span style="font-size:10.0pt;font-family:"">as Wee method and Modified Prata method were successful in having the smaller time complexit<span>ies, some other approaches did not make any significant difference compa</span>r</span><span style="font-size:10.0pt;font-family:"">ed</span><span style="font-size:10.0pt;font-family:""> to the classical algorithm. 展开更多
关键词 Time Complexity Uniform Model zernike moments zernike Polynomi-als
下载PDF
Analyzing Antarctic ice sheet snowmelt with dynamic Big Earth Data 被引量:1
5
作者 Dong Liang Huadong Guo +4 位作者 Lu Zhang Mingwei Wang Lizhe Wang Lei Liang Zeeshan Shirazi 《International Journal of Digital Earth》 SCIE 2021年第1期88-105,共18页
Big Earth Data—big data associated with Earth sciences—can potentially revolutionize research on climate change,sustainable development,and other issues of global concern.For example,analyzing massive amounts of sat... Big Earth Data—big data associated with Earth sciences—can potentially revolutionize research on climate change,sustainable development,and other issues of global concern.For example,analyzing massive amounts of satellite imagery of polar environments,which are sensitive to the effects of climate change,provides insights into global climate trends.This study proposes a method to use Big Earth Data to explore changes in snowmelt over the Antarctic ice sheet from 1979 to 2016.The method uses Zernike moments to observe melt area in Antarctica and uses the Mann-Kendall test to detect temporal changes and abnormal information about the continent’s melt area.The melting trend in the time-series data matched the changes in temperature and seasonal transitions.The results do not demonstrate significant change in the area of surface melt;however,abrupt changes in melt conditions linked to temperature changes over the Antarctic ice sheet were observed within the time series.The experiment results demonstrate that the proposed method is robust,adaptive,and capable of extracting the core features of melting snow. 展开更多
关键词 Big Earth Data data analysis Antarctic ice sheet zernike moments Mann-Kendall test
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部