期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Evolutionary Computation Based Optimization of Image Zernike Moments Shape Feature Vector 被引量:1
1
作者 LIU Maofu HU Hujun +2 位作者 ZHONG Ming HE Yanxiang HE Fazhi 《Wuhan University Journal of Natural Sciences》 CAS 2008年第2期153-158,共6页
The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the origin... The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the original image but has too many elements making trouble for the next image analysis phases. Then the low dimension image Zernike moments shape feature vector should be improved and optimized to describe more detail of the original image. So the optimization algorithm based on evolutionary computation is designed and implemented in this paper to solve this problem. The experimental results demonstrate the feasibility of the optimization algorithm. 展开更多
关键词 zernike moment image zernike moments shape feature vector image reconstruction evolutionary computation
下载PDF
Video super-resolution reconstruction based on deep convolutional neural network and spatio-temporal similarity
2
作者 Li Linghui Du Junping +2 位作者 Liang Meiyu Ren Nan Fan Dan 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2016年第5期68-81,共14页
Existing learning-based super-resolution (SR) reconstruction algorithms are mainly designed for single image, which ignore the spatio-temporal relationship between video frames. Aiming at applying the advantages of ... Existing learning-based super-resolution (SR) reconstruction algorithms are mainly designed for single image, which ignore the spatio-temporal relationship between video frames. Aiming at applying the advantages of learning-based algorithms to video SR field, a novel video SR reconstruction algorithm based on deep convolutional neural network (CNN) and spatio-temporal similarity (STCNN-SR) was proposed in this paper. It is a deep learning method for video SR reconstruction, which considers not onlv the mapping relationship among associated low-resolution (LR) and high-resolution (HR) image blocks, but also the spatio-temporal non-local complementary and redundant information between adjacent low-resolution video frames. The reconstruction speed can be improved obviously with the pre-trained end-to-end reconstructed coefficients. Moreover, the performance of video SR will be further improved by the optimization process with spatio-temporal similarity. Experimental results demonstrated that the proposed algorithm achieves a competitive SR quality on both subjective and objective evaluations, when compared to other state-of-the-art algorithms. 展开更多
关键词 video SR reconstruction deep convolutional neural network spatio-temporal siruilarity zernike moment feature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部