The various factors influencing the settlement of composite foundation have been more completely studied through numerical simulation. The influence on the settlement of composite foundation of the geometry and mechan...The various factors influencing the settlement of composite foundation have been more completely studied through numerical simulation. The influence on the settlement of composite foundation of the geometry and mechanical properties of the pile, soil, cushion, and the interface between pile and soil have been investigated through computer simulation, in which the contact elements with zero thickness are used. Some valuable conclusions for the settlement of composite foundation have been obtained: (1) The method using the contact element of zero thickness is successful when used in the simulation of the settlement of composite foundation; (2) Among the factors influencing the settlement of composite foundation, the compression modulus of the soil is the largest, and the cohesion of the soil is the second largest; (3) The effects on settlement of the internal friction angle of the soil, the elastic modulus, the radius, and the length of the pile, and the elestic modulus of the cushion are also more obvious.展开更多
A new kind of material cast polyurethane elastomers (CPUE) is introduced to take the place of rubber on load bearing wheel for the first time. Based on load bearing wheel dimensions, material properties and operatin...A new kind of material cast polyurethane elastomers (CPUE) is introduced to take the place of rubber on load bearing wheel for the first time. Based on load bearing wheel dimensions, material properties and operating conditions, the structure of wheel flange is optimized by zero order finite element method. A detailed three dimensional finite element model of flange of load bearing wheel is developed and utilized to optimize structure of wheel flange. Its service life, which is affected by flange structure parameter, is analyzed by comparing the optimization results with those of prototype of wheel. The results of optimization are presented and the stress field of load bearing wheel in optimal dimension obtained by using finite element analysis method is demonstrated. The finite element analysis and optimization results show that the CPUE load bearing wheel is feasible and suitable for the tracked vehicle and has a guiding value in practice of the weighting design of the whole tracked vehicle.展开更多
In this paper, we introduce the concept of fuzzifying topological linear space and discuss the structures and properties of the balanced neighborhood system of zero element. We also give the algebraic properties and t...In this paper, we introduce the concept of fuzzifying topological linear space and discuss the structures and properties of the balanced neighborhood system of zero element. We also give the algebraic properties and the topological properties of fuzzifying convex set in the fuzzifying topological linear space.展开更多
Based on the combination of multi body dynamics and structural dynamics, a new model of discrete element with flexible connector is developed. It is applicable to the eigenfrequency and geometric nonlinear dynamic re...Based on the combination of multi body dynamics and structural dynamics, a new model of discrete element with flexible connector is developed. It is applicable to the eigenfrequency and geometric nonlinear dynamic response analysis of three dimensional beam structures. It is pointed out that both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off diagonal in a general case. A special discrete element, zero length rigid element, is introduced to simulate the node at which multiple elements are jointed together. It may also be efficient when the axes of adjacent elements are not in the same line. The formulation of stiffness matrix is established while nonlinearity is taken into consideration. Given examples show that the model is successful in eigenvalue calculation and geometric nonlinear response analysis.展开更多
文摘The various factors influencing the settlement of composite foundation have been more completely studied through numerical simulation. The influence on the settlement of composite foundation of the geometry and mechanical properties of the pile, soil, cushion, and the interface between pile and soil have been investigated through computer simulation, in which the contact elements with zero thickness are used. Some valuable conclusions for the settlement of composite foundation have been obtained: (1) The method using the contact element of zero thickness is successful when used in the simulation of the settlement of composite foundation; (2) Among the factors influencing the settlement of composite foundation, the compression modulus of the soil is the largest, and the cohesion of the soil is the second largest; (3) The effects on settlement of the internal friction angle of the soil, the elastic modulus, the radius, and the length of the pile, and the elestic modulus of the cushion are also more obvious.
文摘A new kind of material cast polyurethane elastomers (CPUE) is introduced to take the place of rubber on load bearing wheel for the first time. Based on load bearing wheel dimensions, material properties and operating conditions, the structure of wheel flange is optimized by zero order finite element method. A detailed three dimensional finite element model of flange of load bearing wheel is developed and utilized to optimize structure of wheel flange. Its service life, which is affected by flange structure parameter, is analyzed by comparing the optimization results with those of prototype of wheel. The results of optimization are presented and the stress field of load bearing wheel in optimal dimension obtained by using finite element analysis method is demonstrated. The finite element analysis and optimization results show that the CPUE load bearing wheel is feasible and suitable for the tracked vehicle and has a guiding value in practice of the weighting design of the whole tracked vehicle.
基金the National Natural Science Foundation of China (60274016)the Project of Scientific Research in Hight Education Bureau Liaoning Province (2023901018).
文摘In this paper, we introduce the concept of fuzzifying topological linear space and discuss the structures and properties of the balanced neighborhood system of zero element. We also give the algebraic properties and the topological properties of fuzzifying convex set in the fuzzifying topological linear space.
文摘Based on the combination of multi body dynamics and structural dynamics, a new model of discrete element with flexible connector is developed. It is applicable to the eigenfrequency and geometric nonlinear dynamic response analysis of three dimensional beam structures. It is pointed out that both the generalized elastic coefficient matrix of the flexible connector and the mass matrix of discrete element may be off diagonal in a general case. A special discrete element, zero length rigid element, is introduced to simulate the node at which multiple elements are jointed together. It may also be efficient when the axes of adjacent elements are not in the same line. The formulation of stiffness matrix is established while nonlinearity is taken into consideration. Given examples show that the model is successful in eigenvalue calculation and geometric nonlinear response analysis.