In this paper, we consider multiobjective two-person zero-sum games with vector payoffs and vector fuzzy payoffs. We translate such games into the corresponding multiobjective programming problems and introduce the pe...In this paper, we consider multiobjective two-person zero-sum games with vector payoffs and vector fuzzy payoffs. We translate such games into the corresponding multiobjective programming problems and introduce the pessimistic Pareto optimal solution concept by assuming that a player supposes the opponent adopts the most disadvantage strategy for the self. It is shown that any pessimistic Pareto optimal solution can be obtained on the basis of linear programming techniques even if the membership functions for the objective functions are nonlinear. Moreover, we propose interactive algorithms based on the bisection method to obtain a pessimistic compromise solution from among the set of all pessimistic Pareto optimal solutions. In order to show the efficiency of the proposed method, we illustrate interactive processes of an application to a vegetable shipment problem.展开更多
Nowadays,China is the largest developing country in the world,and the US is the largest developed country in the world.Sino-US economic and trade relations are of great significance to the two nations and may have apr...Nowadays,China is the largest developing country in the world,and the US is the largest developed country in the world.Sino-US economic and trade relations are of great significance to the two nations and may have aprominent impact on the stability and development of the global economy.展开更多
There are a few studies that focus on solution methods for finding a Nash equilibrium of zero-sum games. We discuss the use of Karmarkar’s interior point method to solve the Nash equilibrium problems of a zero-sum ga...There are a few studies that focus on solution methods for finding a Nash equilibrium of zero-sum games. We discuss the use of Karmarkar’s interior point method to solve the Nash equilibrium problems of a zero-sum game, and prove that it is theoretically a polynomial time algorithm. We implement the Karmarkar method, and a preliminary computational result shows that it performs well for zero-sum games. We also mention an affine scaling method that would help us compute Nash equilibria of general zero-sum games effectively.展开更多
To keep the secrecy performance from being badly influenced by untrusted relay(UR), a multi-UR network through amplify-and-forward(AF) cooperative scheme is put forward, which takes relay weight and harmful factor int...To keep the secrecy performance from being badly influenced by untrusted relay(UR), a multi-UR network through amplify-and-forward(AF) cooperative scheme is put forward, which takes relay weight and harmful factor into account. A nonzero-sum game is established to capture the interaction among URs and detection strategies. Secrecy capacity is investigated as game payoff to indicate the untrusted behaviors of the relays. The maximum probabilities of the behaviors of relay and the optimal system detection strategy can be obtained by using the proposed algorithm.展开更多
Non-orthogonal multiple access technology(NOMA),as a potentially promising technology in the 5G/B5G era,suffers fromubiquitous security threats due to the broadcast nature of the wirelessmedium.In this paper,we focus ...Non-orthogonal multiple access technology(NOMA),as a potentially promising technology in the 5G/B5G era,suffers fromubiquitous security threats due to the broadcast nature of the wirelessmedium.In this paper,we focus on artificial-signal-assisted and relay-assisted secure downlink transmission schemes against external eavesdropping in the context of physical layer security,respectively.To characterize the non-cooperative confrontation around the secrecy rate between the legitimate communication party and the eavesdropper,their interactions are modeled as a two-person zero-sum game.The existence of the Nash equilibrium of the proposed game models is proved,and the pure strategyNash equilibriumand mixed-strategyNash equilibriumprofiles in the two schemes are solved and analyzed,respectively.The numerical simulations are conducted to validate the analytical results,and showthat the two schemes improve the secrecy rate and further enhance the physical layer security performance of NOMA systems.展开更多
In this paper,an accelerated value iteration(VI)algorithm is established to solve the zero-sum game problem with convergence guarantee.First,inspired by the successive over relaxation theory,the convergence rate of th...In this paper,an accelerated value iteration(VI)algorithm is established to solve the zero-sum game problem with convergence guarantee.First,inspired by the successive over relaxation theory,the convergence rate of the iterative value function sequence is accelerated significantly with the relaxation factor.Second,the convergence and monotonicity of the value function sequence are analyzed under different ranges of the relaxation factor.Third,two practical approaches,namely the integrated scheme and the relaxation function,are introduced into the accelerated VI algorithm to guarantee the convergence of the iterative value function sequence for zero-sum games.The integrated scheme consists of the accelerated stage and the convergence stage,and the relaxation function can adjust the value of the relaxation factor.Finally,including the autopilot controller,the fantastic performance of the accelerated VI algorithm is verified through two examples with practical physical backgrounds.展开更多
In this paper,a zero-sum game Nash equilibrium computation problem with a common constraint set is investigated under two time-varying multi-agent subnetworks,where the two subnetworks have opposite payoff function.A ...In this paper,a zero-sum game Nash equilibrium computation problem with a common constraint set is investigated under two time-varying multi-agent subnetworks,where the two subnetworks have opposite payoff function.A novel distributed projection subgradient algorithm with random sleep scheme is developed to reduce the calculation amount of agents in the process of computing Nash equilibrium.In our algorithm,each agent is determined by an independent identically distributed Bernoulli decision to compute the subgradient and perform the projection operation or to keep the previous consensus estimate,it effectively reduces the amount of computation and calculation time.Moreover,the traditional assumption of stepsize adopted in the existing methods is removed,and the stepsizes in our algorithm are randomized diminishing.Besides,we prove that all agents converge to Nash equilibrium with probability 1 by our algorithm.Finally,a simulation example verifies the validity of our algorithm.展开更多
This paper attempts to study two-person nonzero-sum games for denumerable continuous-time Markov chains determined by transition rates,with an expected average criterion.The transition rates are allowed to be unbounde...This paper attempts to study two-person nonzero-sum games for denumerable continuous-time Markov chains determined by transition rates,with an expected average criterion.The transition rates are allowed to be unbounded,and the payoff functions may be unbounded from above and from below.We give suitable conditions under which the existence of a Nash equilibrium is ensured.More precisely,using the socalled "vanishing discount" approach,a Nash equilibrium for the average criterion is obtained as a limit point of a sequence of equilibrium strategies for the discounted criterion as the discount factors tend to zero.Our results are illustrated with a birth-and-death game.展开更多
In this paper,a zero-sum game Nash equilibrium computation problem with event-triggered communication is investigated under an undirected weight-balanced multi-agent network.A novel distributed event-triggered project...In this paper,a zero-sum game Nash equilibrium computation problem with event-triggered communication is investigated under an undirected weight-balanced multi-agent network.A novel distributed event-triggered projection subgradient algorithm is developed to reduce the communication burden within the subnetworks.In the proposed algorithm,when the difference between the current state of the agent and the state of the last trigger time exceeds a given threshold,the agent will be triggered to communicate with its neighbours.Moreover,we prove that all agents converge to Nash equilibrium by the proposed algorithm.Finally,two simulation examples verify that our algorithm not only reduces the communication burden but also ensures that the convergence speed and accuracy are close to that of the time-triggered method under the appropriate threshold.展开更多
This paper presents a novel optimal synchronization control method for multi-agent systems with input saturation.The multi-agent game theory is introduced to transform the optimal synchronization control problem into ...This paper presents a novel optimal synchronization control method for multi-agent systems with input saturation.The multi-agent game theory is introduced to transform the optimal synchronization control problem into a multi-agent nonzero-sum game.Then,the Nash equilibrium can be achieved by solving the coupled Hamilton–Jacobi–Bellman(HJB)equations with nonquadratic input energy terms.A novel off-policy reinforcement learning method is presented to obtain the Nash equilibrium solution without the system models,and the critic neural networks(NNs)and actor NNs are introduced to implement the presented method.Theoretical analysis is provided,which shows that the iterative control laws converge to the Nash equilibrium.Simulation results show the good performance of the presented method.展开更多
The existence and uniqueness of the solutions for one kind of forward-backward stochastic differential equations with Brownian motion and Poisson process as the noise source were given under the monotone conditions.Th...The existence and uniqueness of the solutions for one kind of forward-backward stochastic differential equations with Brownian motion and Poisson process as the noise source were given under the monotone conditions.Then these results were applied to nonzero-sum differential games with random jumps to get the explicit form of the open-loop Nash equilibrium point by the solution of the forward-backward stochastic differential equations.展开更多
The existence and uniqueness of the solutions for one kind of forward- backward stochastic differential equations with Brownian motion and Poisson process as the noise source were given under the monotone conditions. ...The existence and uniqueness of the solutions for one kind of forward- backward stochastic differential equations with Brownian motion and Poisson process as the noise source were given under the monotone conditions. Then these results were applied to nonzero-sum differential games with random jumps to get the explicit form of the open-loop Nash equilibrium point by the solution of the forward-backward stochastic differential equations.展开更多
This paper studies a class of continuous-time two person zero-sum stochastic differential games characterized by linear It?’s differential equation with state-dependent noise and Markovian parameter jumps. Under the ...This paper studies a class of continuous-time two person zero-sum stochastic differential games characterized by linear It?’s differential equation with state-dependent noise and Markovian parameter jumps. Under the assumption of stochastic stabilizability, necessary and sufficient condition for the existence of the optimal control strategies is presented by means of a system of coupled algebraic Riccati equations via using the stochastic optimal control theory. Furthermore, the stochastic H∞ control problem for stochastic systems with Markovian jumps is discussed as an immediate application, and meanwhile, an illustrative example is presented.展开更多
The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainl...The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.展开更多
To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference a...To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms.展开更多
Benefiting from the development of Federated Learning(FL)and distributed communication systems,large-scale intelligent applications become possible.Distributed devices not only provide adequate training data,but also ...Benefiting from the development of Federated Learning(FL)and distributed communication systems,large-scale intelligent applications become possible.Distributed devices not only provide adequate training data,but also cause privacy leakage and energy consumption.How to optimize the energy consumption in distributed communication systems,while ensuring the privacy of users and model accuracy,has become an urgent challenge.In this paper,we define the FL as a 3-layer architecture including users,agents and server.In order to find a balance among model training accuracy,privacy-preserving effect,and energy consumption,we design the training process of FL as game models.We use an extensive game tree to analyze the key elements that influence the players’decisions in the single game,and then find the incentive mechanism that meet the social norms through the repeated game.The experimental results show that the Nash equilibrium we obtained satisfies the laws of reality,and the proposed incentive mechanism can also promote users to submit high-quality data in FL.Following the multiple rounds of play,the incentive mechanism can help all players find the optimal strategies for energy,privacy,and accuracy of FL in distributed communication systems.展开更多
Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suf...Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.展开更多
1.Introduction In August 2024,over 4400 Paralympic athletes will gather in Paris for the Paralympic Summer Games—the pinnacle of every Paralympian’s(Para athletes competing at the Paralympic Games)career to showcase...1.Introduction In August 2024,over 4400 Paralympic athletes will gather in Paris for the Paralympic Summer Games—the pinnacle of every Paralympian’s(Para athletes competing at the Paralympic Games)career to showcase their ability and skills.Their training,preparation,and effort in the years leading up to the Games are unparalleled.To achieve success,Paralympians specifically rely on a medical support team to achieve their goals.So,what is required of the medical support team to prepare Paralympians to get ready,set,and go to Paris 2024?展开更多
Objective: To study the problematic use of video games among secondary school students in the city of Parakou in 2023. Methods: Descriptive cross-sectional study conducted in the commune of Parakou from December 2022 ...Objective: To study the problematic use of video games among secondary school students in the city of Parakou in 2023. Methods: Descriptive cross-sectional study conducted in the commune of Parakou from December 2022 to July 2023. The study population consisted of students regularly enrolled in public and private secondary schools in the city of Parakou for the 2022-2023 academic year. A two-stage non-proportional stratified sampling technique combined with simple random sampling was adopted. The Problem Video Game Playing (PVP) scale was used to assess problem gambling in the study population, while anxiety and depression were assessed using the Hospital Anxiety and Depression Scale (HADS). Results: A total of 1030 students were included. The mean age of the pupils surveyed was 15.06 ± 2.68 years, with extremes of 10 and 28 years. The [13 - 18] age group was the most represented, with a proportion of 59.6% (614) in the general population. Females predominated, at 52.8% (544), with a sex ratio of 0.89. The prevalence of problematic video game use was 24.9%, measured using the Video Game Playing scale. Associated factors were male gender (p = 0.005), pocket money under 10,000 cfa (p = 0.001) and between 20,000 - 90,000 cfa (p = 0.030), addictive family behavior (p < 0.001), monogamous family (p = 0.023), good relationship with father (p = 0.020), organization of video game competitions (p = 0.001) and definite anxiety (p Conclusion: Substance-free addiction is struggling to attract the attention it deserves, as it did in its infancy everywhere else. This study complements existing data and serves as a reminder of the need to focus on this group of addictions, whose problematic use of video games remains the most frequent due to its accessibility and social tolerance. Preventive action combined with curative measures remains the most effective means of combating the problem at national level.展开更多
文摘In this paper, we consider multiobjective two-person zero-sum games with vector payoffs and vector fuzzy payoffs. We translate such games into the corresponding multiobjective programming problems and introduce the pessimistic Pareto optimal solution concept by assuming that a player supposes the opponent adopts the most disadvantage strategy for the self. It is shown that any pessimistic Pareto optimal solution can be obtained on the basis of linear programming techniques even if the membership functions for the objective functions are nonlinear. Moreover, we propose interactive algorithms based on the bisection method to obtain a pessimistic compromise solution from among the set of all pessimistic Pareto optimal solutions. In order to show the efficiency of the proposed method, we illustrate interactive processes of an application to a vegetable shipment problem.
文摘Nowadays,China is the largest developing country in the world,and the US is the largest developed country in the world.Sino-US economic and trade relations are of great significance to the two nations and may have aprominent impact on the stability and development of the global economy.
文摘There are a few studies that focus on solution methods for finding a Nash equilibrium of zero-sum games. We discuss the use of Karmarkar’s interior point method to solve the Nash equilibrium problems of a zero-sum game, and prove that it is theoretically a polynomial time algorithm. We implement the Karmarkar method, and a preliminary computational result shows that it performs well for zero-sum games. We also mention an affine scaling method that would help us compute Nash equilibria of general zero-sum games effectively.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2006AA04Z183), National Natural Science Foundation of China (60621001, 60534010, 60572070, 60774048, 60728307), Program for Changjiang Scholars and Innovative Research Groups of China (60728307, 4031002)
基金Supported by the National Natural Science Foundation of China(No.61101223)
文摘To keep the secrecy performance from being badly influenced by untrusted relay(UR), a multi-UR network through amplify-and-forward(AF) cooperative scheme is put forward, which takes relay weight and harmful factor into account. A nonzero-sum game is established to capture the interaction among URs and detection strategies. Secrecy capacity is investigated as game payoff to indicate the untrusted behaviors of the relays. The maximum probabilities of the behaviors of relay and the optimal system detection strategy can be obtained by using the proposed algorithm.
基金supported by the NationalNatural Science Foundation of China under Grants U1836104,61801073,61931004,62072250National Key Research and Development Program of China under Grant 2021QY0700The Startup Foundation for Introducing Talent of NUIST under Grant 2021r039.
文摘Non-orthogonal multiple access technology(NOMA),as a potentially promising technology in the 5G/B5G era,suffers fromubiquitous security threats due to the broadcast nature of the wirelessmedium.In this paper,we focus on artificial-signal-assisted and relay-assisted secure downlink transmission schemes against external eavesdropping in the context of physical layer security,respectively.To characterize the non-cooperative confrontation around the secrecy rate between the legitimate communication party and the eavesdropper,their interactions are modeled as a two-person zero-sum game.The existence of the Nash equilibrium of the proposed game models is proved,and the pure strategyNash equilibriumand mixed-strategyNash equilibriumprofiles in the two schemes are solved and analyzed,respectively.The numerical simulations are conducted to validate the analytical results,and showthat the two schemes improve the secrecy rate and further enhance the physical layer security performance of NOMA systems.
基金supported in part by the National Natural Science Foundation of China under Grant 62222301,Grant 61890930-5,and Grant 62021003the National Science and Technology Major Project under Grant 2021ZD0112302 and Grant 2021ZD0112301the Beijing Natural Science Foundation under Grant JQ19013.
文摘In this paper,an accelerated value iteration(VI)algorithm is established to solve the zero-sum game problem with convergence guarantee.First,inspired by the successive over relaxation theory,the convergence rate of the iterative value function sequence is accelerated significantly with the relaxation factor.Second,the convergence and monotonicity of the value function sequence are analyzed under different ranges of the relaxation factor.Third,two practical approaches,namely the integrated scheme and the relaxation function,are introduced into the accelerated VI algorithm to guarantee the convergence of the iterative value function sequence for zero-sum games.The integrated scheme consists of the accelerated stage and the convergence stage,and the relaxation function can adjust the value of the relaxation factor.Finally,including the autopilot controller,the fantastic performance of the accelerated VI algorithm is verified through two examples with practical physical backgrounds.
文摘In this paper,a zero-sum game Nash equilibrium computation problem with a common constraint set is investigated under two time-varying multi-agent subnetworks,where the two subnetworks have opposite payoff function.A novel distributed projection subgradient algorithm with random sleep scheme is developed to reduce the calculation amount of agents in the process of computing Nash equilibrium.In our algorithm,each agent is determined by an independent identically distributed Bernoulli decision to compute the subgradient and perform the projection operation or to keep the previous consensus estimate,it effectively reduces the amount of computation and calculation time.Moreover,the traditional assumption of stepsize adopted in the existing methods is removed,and the stepsizes in our algorithm are randomized diminishing.Besides,we prove that all agents converge to Nash equilibrium with probability 1 by our algorithm.Finally,a simulation example verifies the validity of our algorithm.
基金supported by National Science Foundation for Distinguished Young Scholars of China (Grant No. 10925107)Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (2011)
文摘This paper attempts to study two-person nonzero-sum games for denumerable continuous-time Markov chains determined by transition rates,with an expected average criterion.The transition rates are allowed to be unbounded,and the payoff functions may be unbounded from above and from below.We give suitable conditions under which the existence of a Nash equilibrium is ensured.More precisely,using the socalled "vanishing discount" approach,a Nash equilibrium for the average criterion is obtained as a limit point of a sequence of equilibrium strategies for the discounted criterion as the discount factors tend to zero.Our results are illustrated with a birth-and-death game.
文摘In this paper,a zero-sum game Nash equilibrium computation problem with event-triggered communication is investigated under an undirected weight-balanced multi-agent network.A novel distributed event-triggered projection subgradient algorithm is developed to reduce the communication burden within the subnetworks.In the proposed algorithm,when the difference between the current state of the agent and the state of the last trigger time exceeds a given threshold,the agent will be triggered to communicate with its neighbours.Moreover,we prove that all agents converge to Nash equilibrium by the proposed algorithm.Finally,two simulation examples verify that our algorithm not only reduces the communication burden but also ensures that the convergence speed and accuracy are close to that of the time-triggered method under the appropriate threshold.
基金Project supported by the National Key R&D Program of China(No.2018YFB1702300)the National Natural Science Foundation of China(Nos.61722312 and 61533017)。
文摘This paper presents a novel optimal synchronization control method for multi-agent systems with input saturation.The multi-agent game theory is introduced to transform the optimal synchronization control problem into a multi-agent nonzero-sum game.Then,the Nash equilibrium can be achieved by solving the coupled Hamilton–Jacobi–Bellman(HJB)equations with nonquadratic input energy terms.A novel off-policy reinforcement learning method is presented to obtain the Nash equilibrium solution without the system models,and the critic neural networks(NNs)and actor NNs are introduced to implement the presented method.Theoretical analysis is provided,which shows that the iterative control laws converge to the Nash equilibrium.Simulation results show the good performance of the presented method.
基金Project supported by the National Natural Science Foundation of China (No.10371067) thePlanned Item for the Outstanding Young Teachers of Ministry of Education of China (No.2057) the Special Fund for Ph.D. Program of Ministry of Education of China ( No.20020422020) and the Fok Ying Tung Education Foundation for Young College Teachers(No.91064)
文摘The existence and uniqueness of the solutions for one kind of forward-backward stochastic differential equations with Brownian motion and Poisson process as the noise source were given under the monotone conditions.Then these results were applied to nonzero-sum differential games with random jumps to get the explicit form of the open-loop Nash equilibrium point by the solution of the forward-backward stochastic differential equations.
基金国家自然科学基金,Outstanding Young Teachers of Ministry of Education of China,Special Fund for Ph.D.Program of Ministry of Education of China,Fok Ying Tung Education Foundation
文摘The existence and uniqueness of the solutions for one kind of forward- backward stochastic differential equations with Brownian motion and Poisson process as the noise source were given under the monotone conditions. Then these results were applied to nonzero-sum differential games with random jumps to get the explicit form of the open-loop Nash equilibrium point by the solution of the forward-backward stochastic differential equations.
文摘This paper studies a class of continuous-time two person zero-sum stochastic differential games characterized by linear It?’s differential equation with state-dependent noise and Markovian parameter jumps. Under the assumption of stochastic stabilizability, necessary and sufficient condition for the existence of the optimal control strategies is presented by means of a system of coupled algebraic Riccati equations via using the stochastic optimal control theory. Furthermore, the stochastic H∞ control problem for stochastic systems with Markovian jumps is discussed as an immediate application, and meanwhile, an illustrative example is presented.
基金supported in part by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA27030100)National Natural Science Foundation of China(72293575, 11832001)。
文摘The pursuit-evasion game models the strategic interaction among players, attracting attention in many realistic scenarios, such as missile guidance, unmanned aerial vehicles, and target defense. Existing studies mainly concentrate on the cooperative pursuit of multiple players in two-dimensional pursuit-evasion games. However, these approaches can hardly be applied to practical situations where players usually move in three-dimensional space with a three-degree-of-freedom control. In this paper,we make the first attempt to investigate the equilibrium strategy of the realistic pursuit-evasion game, in which the pursuer follows a three-degree-of-freedom control, and the evader moves freely. First, we describe the pursuer's three-degree-of-freedom control and the evader's relative coordinate. We then rigorously derive the equilibrium strategy by solving the retrogressive path equation according to the Hamilton-Jacobi-Bellman-Isaacs(HJBI) method, which divides the pursuit-evasion process into the navigation and acceleration phases. Besides, we analyze the maximum allowable speed for the pursuer to capture the evader successfully and provide the strategy with which the evader can escape when the pursuer's speed exceeds the threshold. We further conduct comparison tests with various unilateral deviations to verify that the proposed strategy forms a Nash equilibrium.
基金supported in part by the National Natural Science Foundation of China (No.62271253,61901523,62001381)Fundamental Research Funds for the Central Universities (No.NS2023018)+2 种基金the National Aerospace Science Foundation of China under Grant 2023Z021052002the open research fund of National Mobile Communications Research Laboratory,Southeast University (No.2023D09)Postgraduate Research & Practice Innovation Program of NUAA (No.xcxjh20220402)。
文摘To improve the anti-jamming and interference mitigation ability of the UAV-aided communication systems, this paper investigates the channel selection optimization problem in face of both internal mutual interference and external malicious jamming. A cooperative anti-jamming and interference mitigation method based on local altruistic is proposed to optimize UAVs’ channel selection. Specifically, a Stackelberg game is modeled to formulate the confrontation relationship between UAVs and the jammer. A local altruistic game is modeled with each UAV considering the utilities of both itself and other UAVs. A distributed cooperative anti-jamming and interference mitigation algorithm is proposed to obtain the Stackelberg equilibrium. Finally, the convergence of the proposed algorithm and the impact of the transmission power on the system loss value are analyzed, and the anti-jamming performance of the proposed algorithm can be improved by around 64% compared with the existing algorithms.
基金sponsored by the National Key R&D Program of China(No.2018YFB2100400)the National Natural Science Foundation of China(No.62002077,61872100)+4 种基金the Major Research Plan of the National Natural Science Foundation of China(92167203)the Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110385)the China Postdoctoral Science Foundation(No.2022M710860)the Zhejiang Lab(No.2020NF0AB01)Guangzhou Science and Technology Plan Project(202102010440).
文摘Benefiting from the development of Federated Learning(FL)and distributed communication systems,large-scale intelligent applications become possible.Distributed devices not only provide adequate training data,but also cause privacy leakage and energy consumption.How to optimize the energy consumption in distributed communication systems,while ensuring the privacy of users and model accuracy,has become an urgent challenge.In this paper,we define the FL as a 3-layer architecture including users,agents and server.In order to find a balance among model training accuracy,privacy-preserving effect,and energy consumption,we design the training process of FL as game models.We use an extensive game tree to analyze the key elements that influence the players’decisions in the single game,and then find the incentive mechanism that meet the social norms through the repeated game.The experimental results show that the Nash equilibrium we obtained satisfies the laws of reality,and the proposed incentive mechanism can also promote users to submit high-quality data in FL.Following the multiple rounds of play,the incentive mechanism can help all players find the optimal strategies for energy,privacy,and accuracy of FL in distributed communication systems.
基金supported by the National Natural Science Foundation of China(Nos.51977113,62293500,62293501 and 62293505).
文摘Malicious attacks against data are unavoidable in the interconnected,open and shared Energy Internet(EI),Intrusion tolerant techniques are critical to the data security of EI.Existing intrusion tolerant techniques suffered from problems such as low adaptability,policy lag,and difficulty in determining the degree of tolerance.To address these issues,we propose a novel adaptive intrusion tolerance model based on game theory that enjoys two-fold ideas:(1)it constructs an improved replica of the intrusion tolerance model of the dynamic equation evolution game to induce incentive weights;and (2)it combines a tournament competition model with incentive weights to obtain optimal strategies for each stage of the game process.Extensive experiments are conducted in the IEEE 39-bus system,whose results demonstrate the feasibility of the incentive weights,confirm the proposed strategy strengthens the system’s ability to tolerate aggression,and improves the dynamic adaptability and response efficiency of the aggression-tolerant system in the case of limited resources.
文摘1.Introduction In August 2024,over 4400 Paralympic athletes will gather in Paris for the Paralympic Summer Games—the pinnacle of every Paralympian’s(Para athletes competing at the Paralympic Games)career to showcase their ability and skills.Their training,preparation,and effort in the years leading up to the Games are unparalleled.To achieve success,Paralympians specifically rely on a medical support team to achieve their goals.So,what is required of the medical support team to prepare Paralympians to get ready,set,and go to Paris 2024?
文摘Objective: To study the problematic use of video games among secondary school students in the city of Parakou in 2023. Methods: Descriptive cross-sectional study conducted in the commune of Parakou from December 2022 to July 2023. The study population consisted of students regularly enrolled in public and private secondary schools in the city of Parakou for the 2022-2023 academic year. A two-stage non-proportional stratified sampling technique combined with simple random sampling was adopted. The Problem Video Game Playing (PVP) scale was used to assess problem gambling in the study population, while anxiety and depression were assessed using the Hospital Anxiety and Depression Scale (HADS). Results: A total of 1030 students were included. The mean age of the pupils surveyed was 15.06 ± 2.68 years, with extremes of 10 and 28 years. The [13 - 18] age group was the most represented, with a proportion of 59.6% (614) in the general population. Females predominated, at 52.8% (544), with a sex ratio of 0.89. The prevalence of problematic video game use was 24.9%, measured using the Video Game Playing scale. Associated factors were male gender (p = 0.005), pocket money under 10,000 cfa (p = 0.001) and between 20,000 - 90,000 cfa (p = 0.030), addictive family behavior (p < 0.001), monogamous family (p = 0.023), good relationship with father (p = 0.020), organization of video game competitions (p = 0.001) and definite anxiety (p Conclusion: Substance-free addiction is struggling to attract the attention it deserves, as it did in its infancy everywhere else. This study complements existing data and serves as a reminder of the need to focus on this group of addictions, whose problematic use of video games remains the most frequent due to its accessibility and social tolerance. Preventive action combined with curative measures remains the most effective means of combating the problem at national level.