To improve the performance of the short interleaved serial concatenated convolutional code(SCCC) with low decoding iterative times, the structure of Log MAP algorithm is introduced into the conventional SOVA decoder...To improve the performance of the short interleaved serial concatenated convolutional code(SCCC) with low decoding iterative times, the structure of Log MAP algorithm is introduced into the conventional SOVA decoder to improve its performance at short interleaving delay. The combination of Log MAP and SOVA avoids updating the matrices of the maximum path, and also makes a contribution to the requirement of short delay. The simulation results of several SCCCs show that the improved decoder can obtain satisfied performance with short frame interleaver and it is suitable to the high bit rate low delay communication systems.展开更多
Walsh-Hadamard transform (WriT) can solve linear error equations on Field F2, and the method can be used to recover the parameters of convolutional code. However, solving the equations with many unknowns needs enorm...Walsh-Hadamard transform (WriT) can solve linear error equations on Field F2, and the method can be used to recover the parameters of convolutional code. However, solving the equations with many unknowns needs enormous computer memory which limits the application of WriT. In order to solve this problem, a method based on segmented WriT is proposed in this paper. The coefficient vector of high dimension is reshaped and two vectors of lower dimension are obtained. Then the WriT is operated and the requirement for computer memory is much reduced. The code rate and the constraint length of convolutional code are detected from the Walsh spectrum. And the check vector is recovered from the peak position. The validity of the method is verified by the simulation result, and the performance is proved to be optimal.展开更多
In this paper, we propose a new method to derive a family of regular rate-compatible low-density parity-check(RC-LDPC) convolutional codes from RC-LDPC block codes. In the RC-LDPC convolutional family, each extended...In this paper, we propose a new method to derive a family of regular rate-compatible low-density parity-check(RC-LDPC) convolutional codes from RC-LDPC block codes. In the RC-LDPC convolutional family, each extended sub-matrix of each extended code is obtained by choosing specified elements from two fixed matrices HE1K and HE1K, which are derived by modifying the extended matrices HE1 and HE2 of a systematic RC-LDPC block code. The proposed method which is based on graph extension simplifies the design, and prevent the defects caused by the puncturing method. It can be used to generate both regular and irregular RC-LDPC convolutional codes. All resulted codes in the family are systematic which simplify the encoder structure and have maximum encoding memories which ensure the property. Simulation results show the family collectively offer a steady improvement in performance with code compatibility over binary-input additive white Gaussian noise channel(BI-AWGNC).展开更多
Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum err...Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise.展开更多
An algebraic construction methodology is proposed to design binary time-invariant convolutional low-density parity-check(LDPC)codes.Assisted by a proposed partial search algorithm,the polynomialform parity-check matri...An algebraic construction methodology is proposed to design binary time-invariant convolutional low-density parity-check(LDPC)codes.Assisted by a proposed partial search algorithm,the polynomialform parity-check matrix of the time-invariant convolutional LDPC code is derived by combining some special codewords of an(n,2,n−1)code.The achieved convolutional LDPC codes possess the characteristics of comparatively large girth and given syndrome former memory.The objective of our design is to enable the time-invariant convolutional LDPC codes the advantages of excellent error performance and fast encoding.In particular,the error performance of the proposed convolutional LDPC code with small constraint length is superior to most existing convolutional LDPC codes.展开更多
With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the netw...With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the network being attacked by malicious code.Therefore,it is important to identify malicious codes on computer systems efficiently.However,most of the existing malicious code detection methods have two problems:(1)The ability of the model to extract features is weak,resulting in poor model performance.(2)The large scale of model data leads to difficulties deploying on devices with limited resources.Therefore,this paper proposes a lightweight malicious code identification model Lightweight Malicious Code Classification Method Based on Improved SqueezeNet(LCMISNet).In this paper,the MFire lightweight feature extraction module is constructed by proposing a feature slicing module and a multi-size depthwise separable convolution module.The feature slicing module reduces the number of parameters by grouping features.The multi-size depthwise separable convolution module reduces the number of parameters and enhances the feature extraction capability by replacing the standard convolution with depthwise separable convolution with different convolution kernel sizes.In addition,this paper also proposes a feature splicing module to connect the MFire lightweight feature extraction module based on the feature reuse and constructs the lightweight model LCMISNet.The malicious code recognition accuracy of LCMISNet on the BIG 2015 dataset and the Malimg dataset reaches 98.90% and 99.58%,respectively.It proves that LCMISNet has a powerful malicious code recognition performance.In addition,compared with other network models,LCMISNet has better performance,and a lower number of parameters and computations.展开更多
The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financia...The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financial system and individual clients.Nevertheless,present detection models encounter limitations in their ability to identify malevolent code and its variations,all while encompassing a multitude of parameters.To overcome these obsta-cles,we introduce a lean model for classifying families of malevolent code,formulated on Ghost-DenseNet-SE.This model integrates the Ghost module,DenseNet,and the squeeze-and-excitation(SE)channel domain attention mechanism.It substitutes the standard convolutional layer in DenseNet with the Ghost module,thereby diminishing the model’s size and augmenting recognition speed.Additionally,the channel domain attention mechanism assigns distinctive weights to feature channels,facilitating the extraction of pivotal characteristics of malevolent code and bolstering detection precision.Experimental outcomes on the Malimg dataset indicate that the model attained an accuracy of 99.14%in discerning families of malevolent code,surpassing AlexNet(97.8%)and The visual geometry group network(VGGNet)(96.16%).The proposed model exhibits reduced parameters,leading to decreased model complexity alongside enhanced classification accuracy,rendering it a valuable asset for categorizing malevolent code.展开更多
Self-encoded spread spectrum eliminates the need for traditional pseudo noise (PN) code generators. In a self-encoded multiple access (SEMA) system, the number of users is not limited by the number of available sequen...Self-encoded spread spectrum eliminates the need for traditional pseudo noise (PN) code generators. In a self-encoded multiple access (SEMA) system, the number of users is not limited by the number of available sequences, unlike code division multiple access (CDMA) systems that employ PN codes such as m-, Gold or Kassami sequences. SEMA provides a convenient way of supporting multi-rate, multi-level grades of service in multimedia communications and prioritized heterogeneous networking systems. In this paper, we propose multiuser convolutional channel coding in SEMA that provides fewer cross-correlations among users and thereby reducing multiple access interference (MAI). We analyze SEMA multiuser convolutional coding in additive white Gaussian noise (AWGN) channels as well as fading channels. Our analysis includes downlink synchronous system as well as asynchronous system such as uplink mobile-to-base station communication.展开更多
A new convolutionally coded direct sequence (DS) CDMA system is proposed. The outputs of a convolutional encoder modulate multiple band-limited DS-CDMA waveforms. The receiver detects and combines signals for the desi...A new convolutionally coded direct sequence (DS) CDMA system is proposed. The outputs of a convolutional encoder modulate multiple band-limited DS-CDMA waveforms. The receiver detects and combines signals for the desired user and feeds a soft-decision Viterbi decoder. The performance of this system is compared to that of a convolutionally coded single carrier DS CDMA system with a Rake receiver. At roughly equivalent receiver complexity, results will demonstrate superior performance of the coded multicarrier system.展开更多
A new method to recover packet losses using (2,1,m) convolutional codes is proposed. The erasure correcting decoding algorithm and the decoding determinant theorem is presented. It is also proved that the codes with o...A new method to recover packet losses using (2,1,m) convolutional codes is proposed. The erasure correcting decoding algorithm and the decoding determinant theorem is presented. It is also proved that the codes with optimal distance profile have also optimal delay characteristic. Simulation results show that the proposed method can recover the packet losses more elliciently than RS codes over different decoding delay conditions and thus suits for different packet network delav conditions.展开更多
The paper introduces the state reduction algorithm and accelerated state reduction algorithm are used to compute the distance weight enumerator(transfer function)T[x,y] of convolutional codes.Next use computer simulat...The paper introduces the state reduction algorithm and accelerated state reduction algorithm are used to compute the distance weight enumerator(transfer function)T[x,y] of convolutional codes.Next use computer simulation to compare upper bound on the bit error probability on an additive white Gaussian noise(AWGN) for maximum free distance(MFD) codes of previously found and optimum distance spectrum(ODS) codes with rate 1/4,overall constraint length are 5 and 7,respectively.Finally,a method of how to search for good convolutional codes is given.展开更多
The paper introduces the state reduction algorithm and accelerated state reduction algorithm are used to compute the distance weight enumerator(transfer function) T[x,y] of convolutional codes.Next use computer simula...The paper introduces the state reduction algorithm and accelerated state reduction algorithm are used to compute the distance weight enumerator(transfer function) T[x,y] of convolutional codes.Next use computer simulation to compare upper bound on the bit error probability on an additive white Gaussian noise (AWGN) for maximum free distance (MFD) codes of previously found and optimum distance spectrum (ODS) codes with rate 1/4,overall constraint length are 5 and 7,respectively. Finally,a method of how to search for good convolutional codes is given.展开更多
This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman codi...This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman coding and use it to compute the a priori source information which can be used when the channel environment is bad. The suggested scheme does not require changes on the transmitter side. Compared with separate decoding systems, the gain in signal to noise ratio is about 0 5-1.0 dB with a limi...展开更多
To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation o...To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation of IARCNC is similar to that of Adaptive Random Convolutional Network Coding (ARCNC), with the coefficients of local encoding kernels chosen uniformly at random over a small finite field. The difference is that the length of the local encoding kernels at the nodes used by IARCNC is constrained by the depth; meanwhile, increases until all the related sink nodes can be decoded. This restriction can make the code length distribution more reasonable. Therefore, IARCNC retains the advantages of ARCNC, such as a small decoding delay and partial adaptation to an unknown topology without an early estimation of the field size. In addition, it has its own advantage, that is, a higher reduction in memory use. The simulation and the example show the effectiveness of the proposed algorithm.展开更多
To characterize the algebraic structure of wireless network coding, a hypergragh is utilized to model wireless packet networks from network layer. The algebraic description of random convolutional network coding is de...To characterize the algebraic structure of wireless network coding, a hypergragh is utilized to model wireless packet networks from network layer. The algebraic description of random convolutional network coding is deduced, and the coding condition is also presented. Analyses and simulations show that random convolutional coding is capacity-achieving with probability approaching 1.展开更多
Versatile video coding(H.266/VVC),which was newly released by the Joint Video Exploration Team(JVET),introduces quad-tree plus multitype tree(QTMT)partition structure on the basis of quad-tree(QT)partition structure i...Versatile video coding(H.266/VVC),which was newly released by the Joint Video Exploration Team(JVET),introduces quad-tree plus multitype tree(QTMT)partition structure on the basis of quad-tree(QT)partition structure in High Efficiency Video Coding(H.265/HEVC).More complicated coding unit(CU)partitioning processes in H.266/VVC significantly improve video compression efficiency,but greatly increase the computational complexity compared.The ultra-high encoding complexity has obstructed its real-time applications.In order to solve this problem,a CU partition algorithm using convolutional neural network(CNN)is proposed in this paper to speed up the H.266/VVC CU partition process.Firstly,64×64 CU is divided into smooth texture CU,mildly complex texture CU and complex texture CU according to the CU texture characteristics.Second,CU texture complexity classification convolutional neural network(CUTCC-CNN)is proposed to classify CUs.Finally,according to the classification results,the encoder is guided to skip different RDO search process.And optimal CU partition results will be determined.Experimental results show that the proposed method reduces the average coding time by 32.2%with only 0.55%BD-BR loss compared with VTM 10.2.展开更多
文摘To improve the performance of the short interleaved serial concatenated convolutional code(SCCC) with low decoding iterative times, the structure of Log MAP algorithm is introduced into the conventional SOVA decoder to improve its performance at short interleaving delay. The combination of Log MAP and SOVA avoids updating the matrices of the maximum path, and also makes a contribution to the requirement of short delay. The simulation results of several SCCCs show that the improved decoder can obtain satisfied performance with short frame interleaver and it is suitable to the high bit rate low delay communication systems.
基金supported by the National Natural Science Foundation of China(1127105011371183+2 种基金61403036)the Science and Technology Development Foundation of CAEP(2013A04030202013B0403068)
基金supported by the National Natural Science Foundation of China(61072120)
文摘Walsh-Hadamard transform (WriT) can solve linear error equations on Field F2, and the method can be used to recover the parameters of convolutional code. However, solving the equations with many unknowns needs enormous computer memory which limits the application of WriT. In order to solve this problem, a method based on segmented WriT is proposed in this paper. The coefficient vector of high dimension is reshaped and two vectors of lower dimension are obtained. Then the WriT is operated and the requirement for computer memory is much reduced. The code rate and the constraint length of convolutional code are detected from the Walsh spectrum. And the check vector is recovered from the peak position. The validity of the method is verified by the simulation result, and the performance is proved to be optimal.
基金supported by the National Natural Science Foundation of China(No.61401164,No.61201145,No.61471175)the Natural Science Foundation of Guangdong Province of China(No.2014A030310308)the Supporting Plan for New Century Excellent Talents of the Ministry of Education(No.NCET-13-0805)
文摘In this paper, we propose a new method to derive a family of regular rate-compatible low-density parity-check(RC-LDPC) convolutional codes from RC-LDPC block codes. In the RC-LDPC convolutional family, each extended sub-matrix of each extended code is obtained by choosing specified elements from two fixed matrices HE1K and HE1K, which are derived by modifying the extended matrices HE1 and HE2 of a systematic RC-LDPC block code. The proposed method which is based on graph extension simplifies the design, and prevent the defects caused by the puncturing method. It can be used to generate both regular and irregular RC-LDPC convolutional codes. All resulted codes in the family are systematic which simplify the encoder structure and have maximum encoding memories which ensure the property. Simulation results show the family collectively offer a steady improvement in performance with code compatibility over binary-input additive white Gaussian noise channel(BI-AWGNC).
基金the National Natural Science Foundation of China(Grant Nos.11975132 and 61772295)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019YQ01)the Project of Shandong Province Higher Educational Science and Technology Program,China(Grant No.J18KZ012).
文摘Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise.
基金the National Natural Science Foundation of China(No.61401164)。
文摘An algebraic construction methodology is proposed to design binary time-invariant convolutional low-density parity-check(LDPC)codes.Assisted by a proposed partial search algorithm,the polynomialform parity-check matrix of the time-invariant convolutional LDPC code is derived by combining some special codewords of an(n,2,n−1)code.The achieved convolutional LDPC codes possess the characteristics of comparatively large girth and given syndrome former memory.The objective of our design is to enable the time-invariant convolutional LDPC codes the advantages of excellent error performance and fast encoding.In particular,the error performance of the proposed convolutional LDPC code with small constraint length is superior to most existing convolutional LDPC codes.
文摘With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the network being attacked by malicious code.Therefore,it is important to identify malicious codes on computer systems efficiently.However,most of the existing malicious code detection methods have two problems:(1)The ability of the model to extract features is weak,resulting in poor model performance.(2)The large scale of model data leads to difficulties deploying on devices with limited resources.Therefore,this paper proposes a lightweight malicious code identification model Lightweight Malicious Code Classification Method Based on Improved SqueezeNet(LCMISNet).In this paper,the MFire lightweight feature extraction module is constructed by proposing a feature slicing module and a multi-size depthwise separable convolution module.The feature slicing module reduces the number of parameters by grouping features.The multi-size depthwise separable convolution module reduces the number of parameters and enhances the feature extraction capability by replacing the standard convolution with depthwise separable convolution with different convolution kernel sizes.In addition,this paper also proposes a feature splicing module to connect the MFire lightweight feature extraction module based on the feature reuse and constructs the lightweight model LCMISNet.The malicious code recognition accuracy of LCMISNet on the BIG 2015 dataset and the Malimg dataset reaches 98.90% and 99.58%,respectively.It proves that LCMISNet has a powerful malicious code recognition performance.In addition,compared with other network models,LCMISNet has better performance,and a lower number of parameters and computations.
基金funded by National Natural Science Foundation of China(under Grant No.61905201)。
文摘The field of finance heavily relies on cybersecurity to safeguard its systems and clients from harmful software.The identification of malevolent code within financial software is vital for protecting both the financial system and individual clients.Nevertheless,present detection models encounter limitations in their ability to identify malevolent code and its variations,all while encompassing a multitude of parameters.To overcome these obsta-cles,we introduce a lean model for classifying families of malevolent code,formulated on Ghost-DenseNet-SE.This model integrates the Ghost module,DenseNet,and the squeeze-and-excitation(SE)channel domain attention mechanism.It substitutes the standard convolutional layer in DenseNet with the Ghost module,thereby diminishing the model’s size and augmenting recognition speed.Additionally,the channel domain attention mechanism assigns distinctive weights to feature channels,facilitating the extraction of pivotal characteristics of malevolent code and bolstering detection precision.Experimental outcomes on the Malimg dataset indicate that the model attained an accuracy of 99.14%in discerning families of malevolent code,surpassing AlexNet(97.8%)and The visual geometry group network(VGGNet)(96.16%).The proposed model exhibits reduced parameters,leading to decreased model complexity alongside enhanced classification accuracy,rendering it a valuable asset for categorizing malevolent code.
文摘Self-encoded spread spectrum eliminates the need for traditional pseudo noise (PN) code generators. In a self-encoded multiple access (SEMA) system, the number of users is not limited by the number of available sequences, unlike code division multiple access (CDMA) systems that employ PN codes such as m-, Gold or Kassami sequences. SEMA provides a convenient way of supporting multi-rate, multi-level grades of service in multimedia communications and prioritized heterogeneous networking systems. In this paper, we propose multiuser convolutional channel coding in SEMA that provides fewer cross-correlations among users and thereby reducing multiple access interference (MAI). We analyze SEMA multiuser convolutional coding in additive white Gaussian noise (AWGN) channels as well as fading channels. Our analysis includes downlink synchronous system as well as asynchronous system such as uplink mobile-to-base station communication.
文摘A new convolutionally coded direct sequence (DS) CDMA system is proposed. The outputs of a convolutional encoder modulate multiple band-limited DS-CDMA waveforms. The receiver detects and combines signals for the desired user and feeds a soft-decision Viterbi decoder. The performance of this system is compared to that of a convolutionally coded single carrier DS CDMA system with a Rake receiver. At roughly equivalent receiver complexity, results will demonstrate superior performance of the coded multicarrier system.
基金Supported by National Natural Science Foundation of China under Grant No.69896246
文摘A new method to recover packet losses using (2,1,m) convolutional codes is proposed. The erasure correcting decoding algorithm and the decoding determinant theorem is presented. It is also proved that the codes with optimal distance profile have also optimal delay characteristic. Simulation results show that the proposed method can recover the packet losses more elliciently than RS codes over different decoding delay conditions and thus suits for different packet network delav conditions.
文摘The paper introduces the state reduction algorithm and accelerated state reduction algorithm are used to compute the distance weight enumerator(transfer function)T[x,y] of convolutional codes.Next use computer simulation to compare upper bound on the bit error probability on an additive white Gaussian noise(AWGN) for maximum free distance(MFD) codes of previously found and optimum distance spectrum(ODS) codes with rate 1/4,overall constraint length are 5 and 7,respectively.Finally,a method of how to search for good convolutional codes is given.
文摘The paper introduces the state reduction algorithm and accelerated state reduction algorithm are used to compute the distance weight enumerator(transfer function) T[x,y] of convolutional codes.Next use computer simulation to compare upper bound on the bit error probability on an additive white Gaussian noise (AWGN) for maximum free distance (MFD) codes of previously found and optimum distance spectrum (ODS) codes with rate 1/4,overall constraint length are 5 and 7,respectively. Finally,a method of how to search for good convolutional codes is given.
文摘This paper proposes a modification of the soft output Viterbi decoding algorithm (SOVA) which combines convolution code with Huffman coding. The idea is to extract the bit probability information from the Huffman coding and use it to compute the a priori source information which can be used when the channel environment is bad. The suggested scheme does not require changes on the transmitter side. Compared with separate decoding systems, the gain in signal to noise ratio is about 0 5-1.0 dB with a limi...
基金supported by the National Science Foundation (NSF) under Grants No.60832001,No.61271174 the National State Key Lab oratory of Integrated Service Network (ISN) under Grant No.ISN01080202
文摘To address the issue of field size in random network coding, we propose an Improved Adaptive Random Convolutional Network Coding (IARCNC) algorithm to considerably reduce the amount of occupied memory. The operation of IARCNC is similar to that of Adaptive Random Convolutional Network Coding (ARCNC), with the coefficients of local encoding kernels chosen uniformly at random over a small finite field. The difference is that the length of the local encoding kernels at the nodes used by IARCNC is constrained by the depth; meanwhile, increases until all the related sink nodes can be decoded. This restriction can make the code length distribution more reasonable. Therefore, IARCNC retains the advantages of ARCNC, such as a small decoding delay and partial adaptation to an unknown topology without an early estimation of the field size. In addition, it has its own advantage, that is, a higher reduction in memory use. The simulation and the example show the effectiveness of the proposed algorithm.
基金Supported by National Natural Science Foundation of China (No.61271174)Young Teachers' Innovation Foundation of Xidian University(K5051303137)
文摘To characterize the algebraic structure of wireless network coding, a hypergragh is utilized to model wireless packet networks from network layer. The algebraic description of random convolutional network coding is deduced, and the coding condition is also presented. Analyses and simulations show that random convolutional coding is capacity-achieving with probability approaching 1.
基金Manuscript received February 13, 2016 accepted December 7, 2016. This work was supported by the National Natural Science Foundation of China (61362001, 61661031), Jiangxi Province Innovation Projects for Postgraduate Funds (YC2016-S006), the International Postdoctoral Exchange Fellowship Program, and Jiangxi Advanced Project for Post-Doctoral Research Fund (2014KY02).
基金This paper is supported by the following funds:The National Key Research and Development Program of China(2018YFF01010100)Basic Research Program of Qinghai Province under Grants No.2021-ZJ-704,The Beijing Natural Science Foundation(4212001)Advanced information network Beijing laboratory(PXM2019_014204_500029).
文摘Versatile video coding(H.266/VVC),which was newly released by the Joint Video Exploration Team(JVET),introduces quad-tree plus multitype tree(QTMT)partition structure on the basis of quad-tree(QT)partition structure in High Efficiency Video Coding(H.265/HEVC).More complicated coding unit(CU)partitioning processes in H.266/VVC significantly improve video compression efficiency,but greatly increase the computational complexity compared.The ultra-high encoding complexity has obstructed its real-time applications.In order to solve this problem,a CU partition algorithm using convolutional neural network(CNN)is proposed in this paper to speed up the H.266/VVC CU partition process.Firstly,64×64 CU is divided into smooth texture CU,mildly complex texture CU and complex texture CU according to the CU texture characteristics.Second,CU texture complexity classification convolutional neural network(CUTCC-CNN)is proposed to classify CUs.Finally,according to the classification results,the encoder is guided to skip different RDO search process.And optimal CU partition results will be determined.Experimental results show that the proposed method reduces the average coding time by 32.2%with only 0.55%BD-BR loss compared with VTM 10.2.