The Zhangjiakou-Bohai Sea seismic belt is an important seismic zone in North China. The direction of principal compressive stress is near EW in this region. According to digital seismic data from the Capital Region fr...The Zhangjiakou-Bohai Sea seismic belt is an important seismic zone in North China. The direction of principal compressive stress is near EW in this region. According to digital seismic data from the Capital Region from September 2005 to September 2010,and using the SAM method,the spatial distribution of the crust anisotropy characteristics are studied and discussed in the middle-eastern part of the Zhangjiakou-Bohai Sea seismic belt. The principal polarization direction,which is near EW direction,is obvious in the middleeastern Zhangjiakou-Bohai Sea seismic belt. The spatial distribution of polarization direction crossing the Zhangjiakou-Bohai Sea seismic belt shows that there is little difference among the Yanshan uplift area,inside of the seismic zone and North China basin,and the principal polarization direction is near EW.展开更多
Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute...Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute the northwestern margin fault belt of the Qinghai\|Tibetan plateau. In order to investigate the deep crust structure in the Altun region, layers which Tarim lithosphere subducted beneath the Qinghai\|Tibetan plateau, the forward structure of the subduction plate and the scale of the plate subduction, a deep seismic reflection profile was designed. Data collection work of the deep seismic reflection profile across Altun fault was completed during 24/8/1999 to 25/9/1999. The profile locates in Qiemo county, Xinjiang Uygur Autonomous Region, the southern end of the profile stretches into Altun Mountains, the northern end locates in the Tarim desert margin. The profile is nearly SN trending and crosses the main Altun fault. The profile totally is 145km long, time record is 30 seconds, the smallest explosive amount is 72~100kg, the biggest explosive amount reaches 200~300kg, the explosive distance is 800m, and detectors are laid at a 50m distance.展开更多
The study in this paper analyzes and compares the distribution on the global engine active seismic zone and cooling seismic belt basing on the ANSS earthquake catalog from Northern California Earthquake Data Center. A...The study in this paper analyzes and compares the distribution on the global engine active seismic zone and cooling seismic belt basing on the ANSS earthquake catalog from Northern California Earthquake Data Center. An idea of the seismogenesis and earthquake prediction research is achieved by showing the stratigraphic structure in the hot engine belt. The results show that the main engine and its seismic cones are the global seismic activity area, as well as the subject of global geological disaster. Based on the conjecture of other stratum structure, the energy of crustal strong earthquake and volcano activities probably originates from the deep upper mantle. It is suggested that the research on earthquake and volcano prediction should focus on the monitor and analysis on the sub-crustal earthquake activities.展开更多
The studies of seismic tomography and wide-angle reflection have been carried out to reveal the velocity structUrebeneath the eastern Dabie orogenic belt. The result from the seismic tomography shows the high velocity...The studies of seismic tomography and wide-angle reflection have been carried out to reveal the velocity structUrebeneath the eastern Dabie orogenic belt. The result from the seismic tomography shows the high velocity bodiesmight be positioned to a depth of only about 1 .5 km below sea level within the Dabie ultra-high pressure metamorphic (UHPM) belt; the fan-profile shows the Shuihou-Wuhe fault, the demarcation between the South Dabieand the North Dabie, slopes to the south-west at a dip angle of about 45° in the bottom of upper crust. The wideangle reflection shows the middle crustal boundaries and the complex features from the lower crust.展开更多
A single-room,single-storey full-scale brick masonry building with precast RC roofing system was tested thrice under displacement controlled lateral cyclic loading,to assess the effectiveness of the basic repair and s...A single-room,single-storey full-scale brick masonry building with precast RC roofing system was tested thrice under displacement controlled lateral cyclic loading,to assess the effectiveness of the basic repair and seismic strengthening techniques.Initially,the virgin building specimen was loaded laterally to f^tilure.In the second stage,the damaged building was repaired by stitching across the cracks,and tested under the same lateral loading.In the third stage,the twice-damaged structure was repaired once more by stitching and strengthened by twin lintel belt in steel and vertical comer reinforcement, and re-tested.The building strengthened by twin lintel belt in steel showed about 28% higher strength under lateral loading than the virgin building.展开更多
The regional characteristics of stress field in the southern part of the northusouth seismic belt (NSB) have beenanalyzed in detail based on the mechanism solutions of 134 medium and large earthquakes from 1933 to 199...The regional characteristics of stress field in the southern part of the northusouth seismic belt (NSB) have beenanalyzed in detail based on the mechanism solutions of 134 medium and large earthquakes from 1933 to 1991.The results show that the southern part of the NSB is a shallow earthquake zone where most earthquakes arecaused by the strike-slip faulting. There is a systematic distribution of the directions of P-and T-axes in thewestern and the eastern regions of the southern part of the NSB. P-and T-axes in the western region are in theNE-SW direction and in the NW-SE direction. P-and T-axes in the eastern region are oriented in NW-SE andNE-SW, respectively. The directions of p-axes in the western and the eastern regions show a pattern of a reversal 'V' as a whole. The boundary between the eastern and western regions coincides with that between the Tibetan Plateau and the Yangtze crustal block. Based on a lot of mechanism solutions, the result indicates that thedirection of P-axes roughly shows the consistent distributions from the Himalayan collision zone to the easternregion and from the eastern coast collision zone in Taiwan to the eastern region of southern part of the NSB, respectively. It is suggested that the tectonic force due to relative movement between the indo-Australian and theEurasian plates is transmitted from the Himalayan collision zone to the western region of the southern part ofNSB, simultaneously, the tectonic force due to the relative movement between the Philippine Sea and theEurasian plates is transmitted from the eastern region coast in Taiwan to the eastern region of the southern partof NSB, and control the stress field there, respectively.展开更多
Based on the relationship between body wave magnitued m b and seismic moment M 0 presented by PEI SHAN CHEN (1981), by using the moment tensor and focal mechanism solution in the earthquake reports of EDR, ...Based on the relationship between body wave magnitued m b and seismic moment M 0 presented by PEI SHAN CHEN (1981), by using the moment tensor and focal mechanism solution in the earthquake reports of EDR, a global shear stress pattern including shear stress values and directions of P and T principal axis was obatained. The distribution of ambient shear stress values in the globe is: the highest in intraplate followed by subduction zone, and the lowest in oceanic ridge. The horizontal directions of the maximum principal stresses we got are coincident very well with the result of Zoback (1989). The detail analysis of the stress state in Tonga region shows that: The subduction slab bends down in shallow by press and bends up in deep because of the resistance from deeper part. Between them, the slab is in an equilibrum state. After analysizing the global stress distribution, we got the result that: the plate is driven by a drag force from under its bottom, the plate motion results in its extensional state in oceanic ridge and compressive state in subduction zone.展开更多
The relation between the dynamic evolution feature of gravity field and strong seismicity is studied. The result shows that the regional gravity field variation enjoys inhomogeneity of spatial and temporal distributio...The relation between the dynamic evolution feature of gravity field and strong seismicity is studied. The result shows that the regional gravity field variation enjoys inhomogeneity of spatial and temporal distribution and gravity change in different regions. It may be resulted from active faults and seismogenic process, and may be due to microdynamic activity of regional strain energy, which might be accumulated or released in different stages, and there exists transformation process of stress.展开更多
Focusing on the b-value as the research target and under the theoretical framework that the b-value is determined by stress state and medium properties, the variation characteristics of the b-value in the Hetao seismi...Focusing on the b-value as the research target and under the theoretical framework that the b-value is determined by stress state and medium properties, the variation characteristics of the b-value in the Hetao seismic belt are analyzed. Earthquakes with ML≥1. 5,which have occurred in the Hetao seismic belt since 1970 are selected to conduct the quantitative detection of the non-uniform temporal change of Mcusing the EMR method. Based on the actual situation of seismic activity,the lower limit magnitude is set as ML2. 0 to calculate the b-value. The temporal variation of the b-value is calculated and scanned using the least square method. The results show that there is a good corresponding relationship between the temporal variation of the b-value,strong earthquake activity,network distribution and aftershock deletion. We also calculate and scan the spatial variation of the b-value by using maximum likelihood. The results show that the spatial difference is possibly caused by stress state and crustal medium properties. The tectonic dependence of the b-value is obvious. In addition,the sufficient earthquakes samples in each magnitude interval are still a key step to improve the calculation accuracy of the b-value.展开更多
In the eastern part of the Indian shield, late Paleozoic-Mesozoic sedimentary rocks of the Talchir Basin lie precisely along a contact of Neoproterozoic age between granulites of the Eastern Ghats Mobile Belt (EGMB)...In the eastern part of the Indian shield, late Paleozoic-Mesozoic sedimentary rocks of the Talchir Basin lie precisely along a contact of Neoproterozoic age between granulites of the Eastern Ghats Mobile Belt (EGMB) and amphibolite facies rocks of the Rengali Province. At present, the northern part of the basin experiences periodic seismicity by reactivation of faults located both within the basin, and in the Rengali Province to the north. Detailed gravity data collected across the basin show that Bouguer anomalies decrease from the EGMB (~+15 mGal), through the basin (^-10 mGal), into the Rengali Province (^-15 mGal). The data are consistent with the reportedly uncompensated nature of the EGMB, and indicate that the crust below the Rengali Province has a cratonic gravity signature. The contact between the two domains with distinct sub-surface structure, inferred from gravity data, coincides with the North Orissa Boundary Fault (NOBF) that defines the northern boundary of the Talchir Basin. Post-Gondwana faults are also localized along the northern margin of the basin, and present-day seismic tremors also have epicenters close to the NOBF. This indicates that the NOBF was formed by reactivation of a Neo- proterozoic terrane boundary, and continues to be susceptible to seismic activity even at the present-day.展开更多
This paper makes a summary of status of delimitation of seismic zones and belts of China firstly in aspects of studying history, purpose, usage, delimiting principles, various presenting forms and main specialties. Th...This paper makes a summary of status of delimitation of seismic zones and belts of China firstly in aspects of studying history, purpose, usage, delimiting principles, various presenting forms and main specialties. Then the viewpoints are emphasized, making geographical divisions by seismicity is just the most important purpose of delimiting seismic belts and the concept of seismic belt is also quite different from that of seismic statistical zone used in CPSHA method. The concept of seismic statistical zone and its history of evolvement are introduced too. Large differences between these rwo concepts exist separately in their statistical property, actual meaning, gradation, required scale, and property of refusing to overlap each other, aim and usage of delimitation. But in current engineering practice, these two concepts are confused. On the one hand, it causes no fit theory for delimiting seismic statistical zone in PSHA to be set up; on the other hand, researches about delimitation of seismic belts with purposes of seismicity zoning and studying on structural environment, mechanism of earthquake generating also pause to go ahead. Major conclusions are given in the end of this paper, that seismic statistical zone bases on the result of seismic belt delimiting, it only arises in and can be used in the especial PSHA method of China with considering spatially and temporally inhomogeneous seismic activities, and its concept should be clearly differentiated from the concept of seismic belt.展开更多
Recurrence model for strong earthquakes on Fen Wei seismic belt is proposed on the basis of the collection and analysis of fault slip rate, paleoearthquake sequence, maximum displacement of each event etc. on 21 faul...Recurrence model for strong earthquakes on Fen Wei seismic belt is proposed on the basis of the collection and analysis of fault slip rate, paleoearthquake sequence, maximum displacement of each event etc. on 21 fault segments of the belt, which are active since late Late Pleistocene. And the long and intermediate term seismic potential of the belt has been evaluated through four approaches.展开更多
To study the characteristics of gravity variations in and near the North-South Seismic Belt before the 2013 Lushan earthquake,we used the geopotential-field models based on monthly data of the RI.~5 GRACE satellite to...To study the characteristics of gravity variations in and near the North-South Seismic Belt before the 2013 Lushan earthquake,we used the geopotential-field models based on monthly data of the RI.~5 GRACE satellite to calculate the gravity changes. Here we present the patterns of annually cumulative variation, differentiatial variation and secular trend, as well as the continuous time-series at 4 characteristic sites during 2004 -2012. The result shows that the anomalous positive-to-negative transition zone, in which the epicenter of the 2008 Wenchuan earthquake was located, did not show any new gravity change before the Lushan earthquake, though located in the same zone.展开更多
The 1°×1° distribution map of crustmantle structural ratio R for the lithosphere along the Longitudinal Seismic Belt of China has been compiled using computer based on the results of geophysical prospec...The 1°×1° distribution map of crustmantle structural ratio R for the lithosphere along the Longitudinal Seismic Belt of China has been compiled using computer based on the results of geophysical prospecting by previous researchers, and the latest results by the present authors. Based on this map, an insight into the structural features of the crustmantle assemblage along the Longitudinal Seismic Belt has been gained, while their relation to seismic activity and the distributions of geothermal flux and intracrustal high conductivitylow velocity layers, as well as their tectonic effect to seismicity have been discussed.展开更多
Artificial earthquake catalogue simulation is one of the ways to effectively improve the incompleteness of the existing earthquake catalogue,the scarcity of large earthquake records and the improvement of seismologica...Artificial earthquake catalogue simulation is one of the ways to effectively improve the incompleteness of the existing earthquake catalogue,the scarcity of large earthquake records and the improvement of seismological research. Based on the Poisson distribution model of seismic activity and the Gutenberg-Richter magnitude-frequency relationship,the Monte Carlo method which can describe the characteristics of the stochastic nature and the physical experiment process is used. This paper simulates the future seismic catalogues of the Fenhe-Weihe seismic belt of different durations and conducts statistical tests on them.The analysis shows that the simulation catalogue meets the set seismic activity parameters and meets the Poisson distribution hypothesis,which can obtain a better simulated earthquake catalogues that meets the seismic activity characteristics. According to the simulated earthquake catalogues,future earthquake trends in this region are analyzed to provide reference for seismic hazard analysis.展开更多
Earthquake prediction practice and a large number of earthquake cases show that anomalous images of small earthquake belts may appear near the epicenter before strong earthquakes.Through the research of earthquake cas...Earthquake prediction practice and a large number of earthquake cases show that anomalous images of small earthquake belts may appear near the epicenter before strong earthquakes.Through the research of earthquake cases,researchers have a relatively consistent method to determine the clarity of an identified seismic belt,but there is still a lack of method on seismic belt identification from the distribution of scattered points.Due to the complexity of exhaustive algorithm,the rapid automatic identification technique of seismic belts has been progressing slowly.Visual recognition is still the basic method of seismic belt identification.Based on the algorithm of distance correlation,this paper presents a fast automatic identification method of seismic belts.The effectiveness of this method was proved by 100 random earthquakes and an example of seismic belts of magnitude 4.0 before the 2005 Jiujiang M5.7 earthquake.The results show that:①the automatic identification of seismic belts should first identify the"relational earthquake",then identify the"suspected seismic belt",and finally use the criterion of seismic belt clarity to determine;②random earthquakes and real earthquakes identification results show that the distance correlation method can realize the fast automatic identification of seismic belts by computer.展开更多
After the 2015 M_S8. 1 Nepal earthquake,a strong and moderate seismicity belt has formed in Tibet gradually spreading along the northeast direction. In this paper,we attempt to summarize the features and investigate t...After the 2015 M_S8. 1 Nepal earthquake,a strong and moderate seismicity belt has formed in Tibet gradually spreading along the northeast direction. In this paper,we attempt to summarize the features and investigate the primary mechanism of this behavior of seismic activity,using a 2-D finite element numerical model with tectonic dynamic settings and GPS horizontal displacements as the constraints. In addition,compared with the NEtrending seismicity belt triggered by the 1996 Xiatongmoin earthquake,we discuss the future earthquake hazard in and around Tibet. Our results show that: the NE-directed seismicity belt is the response of enhanced loading on the anisotropic Qinghai-Tibetan plateau from the Indian plate and earthquake thrusting. Also,this possibly implies that a forthcoming strong earthquake may fill in the gaps in the NE-directed seismicity belt or enhance the seismic hazard in the eastern( the north-south seismic zone) and western( Tianshan tectonic region) parts near the NE-directed belt.展开更多
The south segment of the China North-South Seismic Belt is located in the southeast margin of the Qinghai Tibet Plateau.This region is characterized by the frequent seismic activity in Chinese mainland.In this paper,t...The south segment of the China North-South Seismic Belt is located in the southeast margin of the Qinghai Tibet Plateau.This region is characterized by the frequent seismic activity in Chinese mainland.In this paper,the geomagnetic field model NGDC-720 and the data of terrestrial heat flow are used to investigate the distribution of crustal magnetic anomalies,the depth of Curie surface,and the characteristics of the crustal thermal structure in the south segment of the North-South Seismic Belt.The distribution characteristics of the vertical component AZ and the magnetic declination AD in the area with earthquakes over a magnitude of 6 and their aftershocks since 1970 are focused on.The results show that the earthquakes are mainly observed in the area of negative magnetic anomaly or the strong and weak transition zone.It especially shows in the AD.The Curie surface in the study area varies significantly,ranging from 20.8 to 31 km.The uplift area of the Curie surface is consistent with the high-value area of terrestrial heat flow.The high geothermal area corresponds to the strong earthquake activity area.The focal depth of most strong earthquakes is shallower than the depth of the Curie surface.The strong earthquakes mainly occur in the deep-shallow transition zones of the Curie surface.The results can be used as a reference for strong earthquake prediction in this area.展开更多
Using the rich deep seismic sounding data recorded in the middle part of the NorthSouth Seismic Belt in China,the horizontal and vertical profiles are constructed to obtain the seismic velocity structure,analyze the s...Using the rich deep seismic sounding data recorded in the middle part of the NorthSouth Seismic Belt in China,the horizontal and vertical profiles are constructed to obtain the seismic velocity structure,analyze the seismic distribution and calculate the seismic energy and the thickness of the seismogenic layer at the same time.On this basis,the seismicity parameters are calculated using the earthquake catalogue of the study area for the past 40 years,and the relationship between the b-value distribution and the velocity structure is analyzed.The results show an uneven b-value distribution in the study area and a segmented feature along the Longmenshan fault zone.Most of the earthquakes occur in the transition zone anomalies from the positive to the negative.In addition,the thickness of the crust drops from ~60 km to ~48 km from the Southeastern to the Northeastern Qinghai-Tibetan Plateau,but the thickness of the seismogenic layer increases gradually.It is speculated that the crustal composition of the Northeastern margin contains more felsic materials and has relatively stronger seismic activities than the Southeastern Qinghai-Tibetan Plateau,possibly associated with the subduction and compression of the Indian Ocean Plate.展开更多
The southern segment of the North-South Seismic Belt in China is a critical region for earthquake preparedness and risk reduction efforts.However,limited by the low density of seismic stations and the use of single-pa...The southern segment of the North-South Seismic Belt in China is a critical region for earthquake preparedness and risk reduction efforts.However,limited by the low density of seismic stations and the use of single-parameter physical structural models,the deep tectonic features and seismogenic environment in this area remain controversial.Thus,a comprehensive analysis based on high-resolution crustal structures and multiple physical parameters is required.In this study,we applied the ambient noise tomography method to obtain the three-dimensional(3D)crustal S-wave velocity structure using continuous waveform data from 112 permanent stations and 350 densely distributed temporary stations in the southern segment of the North-South Seismic Belt.Then,we obtained the high-resolution 3D density structure through wavenumber-domain 3D gravity imaging constrained by the velocity structure.The low-velocity and low-density anomalies in the upper crust of the study area were mainly distributed in the Sichuan Basin and around Dali and Simao,while the high-velocity and high-density anomalies were primarily distributed in the Panxi region,corresponding to the surface geological features.Two prominent low-velocity and low-density anomalies were observed in the middle and lower crust:one to the west of the Songpan-Garzêblock and Sichuan-Yunnan diamond-shaped block,and the other near the Anninghe-Xiaojiang fault.Combined with the spatial distribution of seismic events in the study area,we found that previous earthquakes predominantly occurred in the transition zones between high and low anomaly regions and in the low-velocity and low-density zones in the upper crust.In contrast,moderate-to-strong earthquakes mainly occurred within the transition zones between high and low anomaly regions and close to the high-velocity and high-density regions,often with low-velocity and low-density layers below their hypocenters.Fluids play a critical role in the seismogenic process by reducing fault strength and destabilizing the stress state,which may be a triggering factor for earthquakes in the study area.Additionally,the upwelling of molten materials from the mantle may lead to energy accumulation and stress conce-ntration,providing an important seismogenic background for moderate-to-strong earthquakes in this area.展开更多
基金funded by the Special Fund for Basic Research and Operating Expenses of Institute of Earthquake Science,CEA(2009-11)Key Project of International Science and Technology Cooperation and Exchange of Ministry of Science and Technology of the People's Republic os China(2010DFB20190)
文摘The Zhangjiakou-Bohai Sea seismic belt is an important seismic zone in North China. The direction of principal compressive stress is near EW in this region. According to digital seismic data from the Capital Region from September 2005 to September 2010,and using the SAM method,the spatial distribution of the crust anisotropy characteristics are studied and discussed in the middle-eastern part of the Zhangjiakou-Bohai Sea seismic belt. The principal polarization direction,which is near EW direction,is obvious in the middleeastern Zhangjiakou-Bohai Sea seismic belt. The spatial distribution of polarization direction crossing the Zhangjiakou-Bohai Sea seismic belt shows that there is little difference among the Yanshan uplift area,inside of the seismic zone and North China basin,and the principal polarization direction is near EW.
文摘Altun fault is regarded as a large\|scale sinistral strike\|slip fault, it is composed of several faults with the different character, and there is a special geological structure in the fault belt, and they constitute the northwestern margin fault belt of the Qinghai\|Tibetan plateau. In order to investigate the deep crust structure in the Altun region, layers which Tarim lithosphere subducted beneath the Qinghai\|Tibetan plateau, the forward structure of the subduction plate and the scale of the plate subduction, a deep seismic reflection profile was designed. Data collection work of the deep seismic reflection profile across Altun fault was completed during 24/8/1999 to 25/9/1999. The profile locates in Qiemo county, Xinjiang Uygur Autonomous Region, the southern end of the profile stretches into Altun Mountains, the northern end locates in the Tarim desert margin. The profile is nearly SN trending and crosses the main Altun fault. The profile totally is 145km long, time record is 30 seconds, the smallest explosive amount is 72~100kg, the biggest explosive amount reaches 200~300kg, the explosive distance is 800m, and detectors are laid at a 50m distance.
文摘The study in this paper analyzes and compares the distribution on the global engine active seismic zone and cooling seismic belt basing on the ANSS earthquake catalog from Northern California Earthquake Data Center. An idea of the seismogenesis and earthquake prediction research is achieved by showing the stratigraphic structure in the hot engine belt. The results show that the main engine and its seismic cones are the global seismic activity area, as well as the subject of global geological disaster. Based on the conjecture of other stratum structure, the energy of crustal strong earthquake and volcano activities probably originates from the deep upper mantle. It is suggested that the research on earthquake and volcano prediction should focus on the monitor and analysis on the sub-crustal earthquake activities.
文摘The studies of seismic tomography and wide-angle reflection have been carried out to reveal the velocity structUrebeneath the eastern Dabie orogenic belt. The result from the seismic tomography shows the high velocity bodiesmight be positioned to a depth of only about 1 .5 km below sea level within the Dabie ultra-high pressure metamorphic (UHPM) belt; the fan-profile shows the Shuihou-Wuhe fault, the demarcation between the South Dabieand the North Dabie, slopes to the south-west at a dip angle of about 45° in the bottom of upper crust. The wideangle reflection shows the middle crustal boundaries and the complex features from the lower crust.
文摘A single-room,single-storey full-scale brick masonry building with precast RC roofing system was tested thrice under displacement controlled lateral cyclic loading,to assess the effectiveness of the basic repair and seismic strengthening techniques.Initially,the virgin building specimen was loaded laterally to f^tilure.In the second stage,the damaged building was repaired by stitching across the cracks,and tested under the same lateral loading.In the third stage,the twice-damaged structure was repaired once more by stitching and strengthened by twin lintel belt in steel and vertical comer reinforcement, and re-tested.The building strengthened by twin lintel belt in steel showed about 28% higher strength under lateral loading than the virgin building.
文摘The regional characteristics of stress field in the southern part of the northusouth seismic belt (NSB) have beenanalyzed in detail based on the mechanism solutions of 134 medium and large earthquakes from 1933 to 1991.The results show that the southern part of the NSB is a shallow earthquake zone where most earthquakes arecaused by the strike-slip faulting. There is a systematic distribution of the directions of P-and T-axes in thewestern and the eastern regions of the southern part of the NSB. P-and T-axes in the western region are in theNE-SW direction and in the NW-SE direction. P-and T-axes in the eastern region are oriented in NW-SE andNE-SW, respectively. The directions of p-axes in the western and the eastern regions show a pattern of a reversal 'V' as a whole. The boundary between the eastern and western regions coincides with that between the Tibetan Plateau and the Yangtze crustal block. Based on a lot of mechanism solutions, the result indicates that thedirection of P-axes roughly shows the consistent distributions from the Himalayan collision zone to the easternregion and from the eastern coast collision zone in Taiwan to the eastern region of southern part of the NSB, respectively. It is suggested that the tectonic force due to relative movement between the indo-Australian and theEurasian plates is transmitted from the Himalayan collision zone to the western region of the southern part ofNSB, simultaneously, the tectonic force due to the relative movement between the Philippine Sea and theEurasian plates is transmitted from the eastern region coast in Taiwan to the eastern region of the southern partof NSB, and control the stress field there, respectively.
文摘Based on the relationship between body wave magnitued m b and seismic moment M 0 presented by PEI SHAN CHEN (1981), by using the moment tensor and focal mechanism solution in the earthquake reports of EDR, a global shear stress pattern including shear stress values and directions of P and T principal axis was obatained. The distribution of ambient shear stress values in the globe is: the highest in intraplate followed by subduction zone, and the lowest in oceanic ridge. The horizontal directions of the maximum principal stresses we got are coincident very well with the result of Zoback (1989). The detail analysis of the stress state in Tonga region shows that: The subduction slab bends down in shallow by press and bends up in deep because of the resistance from deeper part. Between them, the slab is in an equilibrum state. After analysizing the global stress distribution, we got the result that: the plate is driven by a drag force from under its bottom, the plate motion results in its extensional state in oceanic ridge and compressive state in subduction zone.
基金the State Key Basic Research Project(G1998040703)and China Seismological Bureau under the "Ninth Five-year Plan"(95-03-01),China.
文摘The relation between the dynamic evolution feature of gravity field and strong seismicity is studied. The result shows that the regional gravity field variation enjoys inhomogeneity of spatial and temporal distribution and gravity change in different regions. It may be resulted from active faults and seismogenic process, and may be due to microdynamic activity of regional strain energy, which might be accumulated or released in different stages, and there exists transformation process of stress.
基金sponsored by the Spark Program of Earthquake Sciences of China Earthquake Administration(XH15010 Y)
文摘Focusing on the b-value as the research target and under the theoretical framework that the b-value is determined by stress state and medium properties, the variation characteristics of the b-value in the Hetao seismic belt are analyzed. Earthquakes with ML≥1. 5,which have occurred in the Hetao seismic belt since 1970 are selected to conduct the quantitative detection of the non-uniform temporal change of Mcusing the EMR method. Based on the actual situation of seismic activity,the lower limit magnitude is set as ML2. 0 to calculate the b-value. The temporal variation of the b-value is calculated and scanned using the least square method. The results show that there is a good corresponding relationship between the temporal variation of the b-value,strong earthquake activity,network distribution and aftershock deletion. We also calculate and scan the spatial variation of the b-value by using maximum likelihood. The results show that the spatial difference is possibly caused by stress state and crustal medium properties. The tectonic dependence of the b-value is obvious. In addition,the sufficient earthquakes samples in each magnitude interval are still a key step to improve the calculation accuracy of the b-value.
文摘In the eastern part of the Indian shield, late Paleozoic-Mesozoic sedimentary rocks of the Talchir Basin lie precisely along a contact of Neoproterozoic age between granulites of the Eastern Ghats Mobile Belt (EGMB) and amphibolite facies rocks of the Rengali Province. At present, the northern part of the basin experiences periodic seismicity by reactivation of faults located both within the basin, and in the Rengali Province to the north. Detailed gravity data collected across the basin show that Bouguer anomalies decrease from the EGMB (~+15 mGal), through the basin (^-10 mGal), into the Rengali Province (^-15 mGal). The data are consistent with the reportedly uncompensated nature of the EGMB, and indicate that the crust below the Rengali Province has a cratonic gravity signature. The contact between the two domains with distinct sub-surface structure, inferred from gravity data, coincides with the North Orissa Boundary Fault (NOBF) that defines the northern boundary of the Talchir Basin. Post-Gondwana faults are also localized along the northern margin of the basin, and present-day seismic tremors also have epicenters close to the NOBF. This indicates that the NOBF was formed by reactivation of a Neo- proterozoic terrane boundary, and continues to be susceptible to seismic activity even at the present-day.
文摘This paper makes a summary of status of delimitation of seismic zones and belts of China firstly in aspects of studying history, purpose, usage, delimiting principles, various presenting forms and main specialties. Then the viewpoints are emphasized, making geographical divisions by seismicity is just the most important purpose of delimiting seismic belts and the concept of seismic belt is also quite different from that of seismic statistical zone used in CPSHA method. The concept of seismic statistical zone and its history of evolvement are introduced too. Large differences between these rwo concepts exist separately in their statistical property, actual meaning, gradation, required scale, and property of refusing to overlap each other, aim and usage of delimitation. But in current engineering practice, these two concepts are confused. On the one hand, it causes no fit theory for delimiting seismic statistical zone in PSHA to be set up; on the other hand, researches about delimitation of seismic belts with purposes of seismicity zoning and studying on structural environment, mechanism of earthquake generating also pause to go ahead. Major conclusions are given in the end of this paper, that seismic statistical zone bases on the result of seismic belt delimiting, it only arises in and can be used in the especial PSHA method of China with considering spatially and temporally inhomogeneous seismic activities, and its concept should be clearly differentiated from the concept of seismic belt.
文摘Recurrence model for strong earthquakes on Fen Wei seismic belt is proposed on the basis of the collection and analysis of fault slip rate, paleoearthquake sequence, maximum displacement of each event etc. on 21 fault segments of the belt, which are active since late Late Pleistocene. And the long and intermediate term seismic potential of the belt has been evaluated through four approaches.
基金supported by the China Earthquake Administration Special Basic Scientific Research Business Expenses(IS201116022)the National Natural Science Foundation of China(40704009,41004030)
文摘To study the characteristics of gravity variations in and near the North-South Seismic Belt before the 2013 Lushan earthquake,we used the geopotential-field models based on monthly data of the RI.~5 GRACE satellite to calculate the gravity changes. Here we present the patterns of annually cumulative variation, differentiatial variation and secular trend, as well as the continuous time-series at 4 characteristic sites during 2004 -2012. The result shows that the anomalous positive-to-negative transition zone, in which the epicenter of the 2008 Wenchuan earthquake was located, did not show any new gravity change before the Lushan earthquake, though located in the same zone.
文摘The 1°×1° distribution map of crustmantle structural ratio R for the lithosphere along the Longitudinal Seismic Belt of China has been compiled using computer based on the results of geophysical prospecting by previous researchers, and the latest results by the present authors. Based on this map, an insight into the structural features of the crustmantle assemblage along the Longitudinal Seismic Belt has been gained, while their relation to seismic activity and the distributions of geothermal flux and intracrustal high conductivitylow velocity layers, as well as their tectonic effect to seismicity have been discussed.
基金supported by the National Key R&D Program of China(No.2017YFB0504104)
文摘Artificial earthquake catalogue simulation is one of the ways to effectively improve the incompleteness of the existing earthquake catalogue,the scarcity of large earthquake records and the improvement of seismological research. Based on the Poisson distribution model of seismic activity and the Gutenberg-Richter magnitude-frequency relationship,the Monte Carlo method which can describe the characteristics of the stochastic nature and the physical experiment process is used. This paper simulates the future seismic catalogues of the Fenhe-Weihe seismic belt of different durations and conducts statistical tests on them.The analysis shows that the simulation catalogue meets the set seismic activity parameters and meets the Poisson distribution hypothesis,which can obtain a better simulated earthquake catalogues that meets the seismic activity characteristics. According to the simulated earthquake catalogues,future earthquake trends in this region are analyzed to provide reference for seismic hazard analysis.
基金the Major State Basic Research Development Program of China(NO.2017YFC 1500502-05)the National Natural Science Foundation of China(No.11672258)We would like to thank Mingxiao Li,Zhiping Song,Gang Li and Yang Zang for the valuable discussions.
文摘Earthquake prediction practice and a large number of earthquake cases show that anomalous images of small earthquake belts may appear near the epicenter before strong earthquakes.Through the research of earthquake cases,researchers have a relatively consistent method to determine the clarity of an identified seismic belt,but there is still a lack of method on seismic belt identification from the distribution of scattered points.Due to the complexity of exhaustive algorithm,the rapid automatic identification technique of seismic belts has been progressing slowly.Visual recognition is still the basic method of seismic belt identification.Based on the algorithm of distance correlation,this paper presents a fast automatic identification method of seismic belts.The effectiveness of this method was proved by 100 random earthquakes and an example of seismic belts of magnitude 4.0 before the 2005 Jiujiang M5.7 earthquake.The results show that:①the automatic identification of seismic belts should first identify the"relational earthquake",then identify the"suspected seismic belt",and finally use the criterion of seismic belt clarity to determine;②random earthquakes and real earthquakes identification results show that the distance correlation method can realize the fast automatic identification of seismic belts by computer.
基金funded by China Comprehensive Geophysical Field Observation in North China of Earthquake Scientific Research(201508009)
文摘After the 2015 M_S8. 1 Nepal earthquake,a strong and moderate seismicity belt has formed in Tibet gradually spreading along the northeast direction. In this paper,we attempt to summarize the features and investigate the primary mechanism of this behavior of seismic activity,using a 2-D finite element numerical model with tectonic dynamic settings and GPS horizontal displacements as the constraints. In addition,compared with the NEtrending seismicity belt triggered by the 1996 Xiatongmoin earthquake,we discuss the future earthquake hazard in and around Tibet. Our results show that: the NE-directed seismicity belt is the response of enhanced loading on the anisotropic Qinghai-Tibetan plateau from the Indian plate and earthquake thrusting. Also,this possibly implies that a forthcoming strong earthquake may fill in the gaps in the NE-directed seismicity belt or enhance the seismic hazard in the eastern( the north-south seismic zone) and western( Tianshan tectonic region) parts near the NE-directed belt.
基金supported by National Natural Science Foundation of China(No.41864003 and 41964004)as well as Yunnan Fundamental Research Projects(202101AT070181).
文摘The south segment of the China North-South Seismic Belt is located in the southeast margin of the Qinghai Tibet Plateau.This region is characterized by the frequent seismic activity in Chinese mainland.In this paper,the geomagnetic field model NGDC-720 and the data of terrestrial heat flow are used to investigate the distribution of crustal magnetic anomalies,the depth of Curie surface,and the characteristics of the crustal thermal structure in the south segment of the North-South Seismic Belt.The distribution characteristics of the vertical component AZ and the magnetic declination AD in the area with earthquakes over a magnitude of 6 and their aftershocks since 1970 are focused on.The results show that the earthquakes are mainly observed in the area of negative magnetic anomaly or the strong and weak transition zone.It especially shows in the AD.The Curie surface in the study area varies significantly,ranging from 20.8 to 31 km.The uplift area of the Curie surface is consistent with the high-value area of terrestrial heat flow.The high geothermal area corresponds to the strong earthquake activity area.The focal depth of most strong earthquakes is shallower than the depth of the Curie surface.The strong earthquakes mainly occur in the deep-shallow transition zones of the Curie surface.The results can be used as a reference for strong earthquake prediction in this area.
基金sponsored by the Youth Science and Technology Foundation(195041106201)of China Earthquake Networks Center。
文摘Using the rich deep seismic sounding data recorded in the middle part of the NorthSouth Seismic Belt in China,the horizontal and vertical profiles are constructed to obtain the seismic velocity structure,analyze the seismic distribution and calculate the seismic energy and the thickness of the seismogenic layer at the same time.On this basis,the seismicity parameters are calculated using the earthquake catalogue of the study area for the past 40 years,and the relationship between the b-value distribution and the velocity structure is analyzed.The results show an uneven b-value distribution in the study area and a segmented feature along the Longmenshan fault zone.Most of the earthquakes occur in the transition zone anomalies from the positive to the negative.In addition,the thickness of the crust drops from ~60 km to ~48 km from the Southeastern to the Northeastern Qinghai-Tibetan Plateau,but the thickness of the seismogenic layer increases gradually.It is speculated that the crustal composition of the Northeastern margin contains more felsic materials and has relatively stronger seismic activities than the Southeastern Qinghai-Tibetan Plateau,possibly associated with the subduction and compression of the Indian Ocean Plate.
基金This research was jointly funded by the National Key R&D Program of China(No.2021YFA0715101)the National Natural Science Foundation of China(Nos.41974101 and 41774098)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences.We thank the two anonymous reviewers and the associate editor for their precious comments and suggestions。
文摘The southern segment of the North-South Seismic Belt in China is a critical region for earthquake preparedness and risk reduction efforts.However,limited by the low density of seismic stations and the use of single-parameter physical structural models,the deep tectonic features and seismogenic environment in this area remain controversial.Thus,a comprehensive analysis based on high-resolution crustal structures and multiple physical parameters is required.In this study,we applied the ambient noise tomography method to obtain the three-dimensional(3D)crustal S-wave velocity structure using continuous waveform data from 112 permanent stations and 350 densely distributed temporary stations in the southern segment of the North-South Seismic Belt.Then,we obtained the high-resolution 3D density structure through wavenumber-domain 3D gravity imaging constrained by the velocity structure.The low-velocity and low-density anomalies in the upper crust of the study area were mainly distributed in the Sichuan Basin and around Dali and Simao,while the high-velocity and high-density anomalies were primarily distributed in the Panxi region,corresponding to the surface geological features.Two prominent low-velocity and low-density anomalies were observed in the middle and lower crust:one to the west of the Songpan-Garzêblock and Sichuan-Yunnan diamond-shaped block,and the other near the Anninghe-Xiaojiang fault.Combined with the spatial distribution of seismic events in the study area,we found that previous earthquakes predominantly occurred in the transition zones between high and low anomaly regions and in the low-velocity and low-density zones in the upper crust.In contrast,moderate-to-strong earthquakes mainly occurred within the transition zones between high and low anomaly regions and close to the high-velocity and high-density regions,often with low-velocity and low-density layers below their hypocenters.Fluids play a critical role in the seismogenic process by reducing fault strength and destabilizing the stress state,which may be a triggering factor for earthquakes in the study area.Additionally,the upwelling of molten materials from the mantle may lead to energy accumulation and stress conce-ntration,providing an important seismogenic background for moderate-to-strong earthquakes in this area.