Taking two f alse color composite Landsat 5 TM (Thematic Mapper) images of band 4,3,2 taken in 1995 and 2000 as data resources, this paper carried out study on LUCC of Zhan gye oasis in recent five years by interpreta...Taking two f alse color composite Landsat 5 TM (Thematic Mapper) images of band 4,3,2 taken in 1995 and 2000 as data resources, this paper carried out study on LUCC of Zhan gye oasis in recent five years by interpretation according to land reso urces classification system of 1:100,000 Resources and Environmental Data base of the Chinese Academy of Sciences. The results show that great changes have taken place in landuse/landcover in Zhangye oasis since 1 995: (1) Changes of landuse structure show that cropland and land for urban c onstruction and built-up area increased, on the contrary, water area an d grassland decreased. These changes reflect the deterioration of eco-e nvironment and the acceleration of urbanization, and also indicate the problems existing in the arrangement of water and land resources betw een the upper and lower reaches of the Heihe River. (2) Regional diff erences of landuse/landcover are evident, characterized by following asp ects: in Sunan County located in Qilian Mountain area, unused land an d grassland decreased, but cropland and land for urban construction an d built-up area increased. In Minle and Shandan counties located in f oothills, unused land, water area and cropland decreased, but grassland and land for urban construction and built-up area increased. In Zhan gye City, Linze County and Gaotai County located in plain area of th e middle reaches of the Heihe River, unused land, water area and gra ssland decreased, while woodland, cropland and land for urban construction and built-up area increased.展开更多
A long-term (1982-2001) field experiment was conducted in a calcareous soil under wheat (Triticum aestivum L.)-wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system at Zhangye, Gansu Province, China...A long-term (1982-2001) field experiment was conducted in a calcareous soil under wheat (Triticum aestivum L.)-wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system at Zhangye, Gansu Province, China to determine the effects of long-term fertilization on crop yield, nutrients interactions, content and accumulation of nitrate-N in soil profiles. Twenty- four plots in a split-plot factorial with a combination of eight treatments (from nitrogen (N), phosphorus (P), potassium (K) and farmyard manure (M) applications) and 3 replications were selected. Main treatments were M and without M, and the sub-treatments were no-fertilizer (CK), N, NP and NPK. When P and K fertilizers were part of treatments, their ratio to N was 1N:0.22P:0.42K. All M, P and K fertilizers were applied as the basal dressing. The grain yield was harvested each experimental period and straw yield for the period from 1988 to 1997. After crop harvest in 2000, the soil was sampled from the 0-20, 20-60, 60-100, 100-140 and 140-180 cm depths to determine NO3^--N content. Maize yield of CK in 2000 was only 28.2% of that in 1984, and wheat in 2001 was 25.7% of that observed in 1982. Average impact of fertilizers on grain yield decreased in the order of N 〉 M 〉 P 〉 K. Yield response to N and P fertilizers increased with progress of the experiment. The impact of K fertilizer showed no increase in grain yield during the initial 6 years (1982-1987), moderate increase in the next 5 years (1988-1992), and considerable increase in the last 9 years (1993-2001). The straw yield trend was similar to grain yield. Accumulation and distribution of NO3^--N in soil was significantly affected by annual fertilizations. Mineral fertilizers (NP and NPK) led to NO3^- -N accumulation in most subsoil layers, with major impact in the 20-140 cm depth. The combination of mineral fertilizers and farmyard manure (MNP and MNPK) reduced soil NO3^--N accumulation in comparison to mineral fertilizers, It can be argued that long-term fertilization significantly enhanced grain and straw yield in this rotation scheme. The findings of this research suggest that it is important to balance application of mineral fertilizers and farmyard manure in order to protect soil and underground water from potential NO3^--N pollution while sustaining high productivity in the oasis agro-ecosystem.展开更多
基金National Natural Science Foundation of China for Young Scholars, No. 40101002 No. 40201001
文摘Taking two f alse color composite Landsat 5 TM (Thematic Mapper) images of band 4,3,2 taken in 1995 and 2000 as data resources, this paper carried out study on LUCC of Zhan gye oasis in recent five years by interpretation according to land reso urces classification system of 1:100,000 Resources and Environmental Data base of the Chinese Academy of Sciences. The results show that great changes have taken place in landuse/landcover in Zhangye oasis since 1 995: (1) Changes of landuse structure show that cropland and land for urban c onstruction and built-up area increased, on the contrary, water area an d grassland decreased. These changes reflect the deterioration of eco-e nvironment and the acceleration of urbanization, and also indicate the problems existing in the arrangement of water and land resources betw een the upper and lower reaches of the Heihe River. (2) Regional diff erences of landuse/landcover are evident, characterized by following asp ects: in Sunan County located in Qilian Mountain area, unused land an d grassland decreased, but cropland and land for urban construction an d built-up area increased. In Minle and Shandan counties located in f oothills, unused land, water area and cropland decreased, but grassland and land for urban construction and built-up area increased. In Zhan gye City, Linze County and Gaotai County located in plain area of th e middle reaches of the Heihe River, unused land, water area and gra ssland decreased, while woodland, cropland and land for urban construction and built-up area increased.
文摘A long-term (1982-2001) field experiment was conducted in a calcareous soil under wheat (Triticum aestivum L.)-wheat (Triticum aestivum L.)-maize (Zea mays L.) rotation system at Zhangye, Gansu Province, China to determine the effects of long-term fertilization on crop yield, nutrients interactions, content and accumulation of nitrate-N in soil profiles. Twenty- four plots in a split-plot factorial with a combination of eight treatments (from nitrogen (N), phosphorus (P), potassium (K) and farmyard manure (M) applications) and 3 replications were selected. Main treatments were M and without M, and the sub-treatments were no-fertilizer (CK), N, NP and NPK. When P and K fertilizers were part of treatments, their ratio to N was 1N:0.22P:0.42K. All M, P and K fertilizers were applied as the basal dressing. The grain yield was harvested each experimental period and straw yield for the period from 1988 to 1997. After crop harvest in 2000, the soil was sampled from the 0-20, 20-60, 60-100, 100-140 and 140-180 cm depths to determine NO3^--N content. Maize yield of CK in 2000 was only 28.2% of that in 1984, and wheat in 2001 was 25.7% of that observed in 1982. Average impact of fertilizers on grain yield decreased in the order of N 〉 M 〉 P 〉 K. Yield response to N and P fertilizers increased with progress of the experiment. The impact of K fertilizer showed no increase in grain yield during the initial 6 years (1982-1987), moderate increase in the next 5 years (1988-1992), and considerable increase in the last 9 years (1993-2001). The straw yield trend was similar to grain yield. Accumulation and distribution of NO3^--N in soil was significantly affected by annual fertilizations. Mineral fertilizers (NP and NPK) led to NO3^- -N accumulation in most subsoil layers, with major impact in the 20-140 cm depth. The combination of mineral fertilizers and farmyard manure (MNP and MNPK) reduced soil NO3^--N accumulation in comparison to mineral fertilizers, It can be argued that long-term fertilization significantly enhanced grain and straw yield in this rotation scheme. The findings of this research suggest that it is important to balance application of mineral fertilizers and farmyard manure in order to protect soil and underground water from potential NO3^--N pollution while sustaining high productivity in the oasis agro-ecosystem.