In this study, we simulated typhoon waves in the shallow waters around the Zhoushan Islands using the WaveWatch-Ⅲ(WW3) model version 5.16, the latest version released by the National Oceanic and Atmospheric Administr...In this study, we simulated typhoon waves in the shallow waters around the Zhoushan Islands using the WaveWatch-Ⅲ(WW3) model version 5.16, the latest version released by the National Oceanic and Atmospheric Administration. Specifically, we used in-situ measurements to evaluate the performance of seven packages of input/dissipation source terms in the WW3 model. We forced the WW3 model by wind fields derived from a combination of the parametric Holland model and high-resolution European Center for Medium-Range Weather Forecasts(ECMWF) wind data in a 0.125? grid, herein called H-E winds. We trained the H-E winds by fitting a shape parameter B to buoy-measured observations, which resulted in a smallest root mean square error(RMSE) of 3 m s^(-1) for B, when treated as a constant 0.4. Then, we applied the seven input/dissipation terms of WW3, labelled ST1, ST2, ST2+STAB2, ST3, ST3+STAB3, ST4, and ST6, to simulate the significant wave height(SWH) up to 5 m during typhoons Fungwong and Chan-hom around the Zhoushan Islands. We then compared the SWHs of the simulated waves with those measured by the in-situ buoys. The results indicate that the simulation using ST2 performs best with an RMSE of 0.79 m for typhoon Fung-wong and an RMSE of 1.12 m for typhoon Chan-hom. Interestingly, we found the simulated SWH results to be relatively higher than those of the observations in the area between Hangzhou Bay and the Zhoushan Islands. This behavior is worthy of further investigation in the future.展开更多
Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of ...Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.展开更多
Taking Tropical Cyclone (TC) No.9806 (Todd) as an example, the effects of Zhoushanarchipelago terrain on landfall TC are investigated by use of numerical simulation. Results show that, undertopographic influences of Z...Taking Tropical Cyclone (TC) No.9806 (Todd) as an example, the effects of Zhoushanarchipelago terrain on landfall TC are investigated by use of numerical simulation. Results show that, undertopographic influences of Zhoushan Islands, the westward-moving landfall TC deflects. And, small orographichighs and enhanced rainfall caused by climbing airflow on the windward slope of main mountains of theseislands are a result of effects of Zhoushan Islands. These results display some particular laws of effects ofsmall-sized islands on the landfall of TC.展开更多
基金partly supported by the National Key Research and Development Program of China under contract (Nos. 2017YFA0604901, 2016YFC 1401002 and 2016YFC1402000)the National Natural Science Foundation of China under contract (Nos. 41776 183, 41606024 and 41506033)
文摘In this study, we simulated typhoon waves in the shallow waters around the Zhoushan Islands using the WaveWatch-Ⅲ(WW3) model version 5.16, the latest version released by the National Oceanic and Atmospheric Administration. Specifically, we used in-situ measurements to evaluate the performance of seven packages of input/dissipation source terms in the WW3 model. We forced the WW3 model by wind fields derived from a combination of the parametric Holland model and high-resolution European Center for Medium-Range Weather Forecasts(ECMWF) wind data in a 0.125? grid, herein called H-E winds. We trained the H-E winds by fitting a shape parameter B to buoy-measured observations, which resulted in a smallest root mean square error(RMSE) of 3 m s^(-1) for B, when treated as a constant 0.4. Then, we applied the seven input/dissipation terms of WW3, labelled ST1, ST2, ST2+STAB2, ST3, ST3+STAB3, ST4, and ST6, to simulate the significant wave height(SWH) up to 5 m during typhoons Fungwong and Chan-hom around the Zhoushan Islands. We then compared the SWHs of the simulated waves with those measured by the in-situ buoys. The results indicate that the simulation using ST2 performs best with an RMSE of 0.79 m for typhoon Fung-wong and an RMSE of 1.12 m for typhoon Chan-hom. Interestingly, we found the simulated SWH results to be relatively higher than those of the observations in the area between Hangzhou Bay and the Zhoushan Islands. This behavior is worthy of further investigation in the future.
基金The National High Technology Research and Development Program of China(863 Program)under contract No.2012AA091701the Fundamental Research Fund for the Central Universities of China under contract No.2012212020211
文摘Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.
基金Natural Science Foundation of China (40275016) Innovative Planning Project for Post-graduates in Jiangsu Province
文摘Taking Tropical Cyclone (TC) No.9806 (Todd) as an example, the effects of Zhoushanarchipelago terrain on landfall TC are investigated by use of numerical simulation. Results show that, undertopographic influences of Zhoushan Islands, the westward-moving landfall TC deflects. And, small orographichighs and enhanced rainfall caused by climbing airflow on the windward slope of main mountains of theseislands are a result of effects of Zhoushan Islands. These results display some particular laws of effects ofsmall-sized islands on the landfall of TC.