The previous work found that the additive kaolin could scavenge not only sodium(Na)but also calcium(Ca)and magnesium(Mg),which is the important ash fluxing agents in low rank coal combustion.Such scavenging effects of...The previous work found that the additive kaolin could scavenge not only sodium(Na)but also calcium(Ca)and magnesium(Mg),which is the important ash fluxing agents in low rank coal combustion.Such scavenging effects of kaolin on fine ash formation were studied in the present work.A typical Zhundong coal and its blends with kaolin at dosages of 1,2 and 4 wt%were combusted in an electrically heated drop tube furnace(DTF)at 1300℃.The fine ashes generated were collected and size segregated by a low pressure impactor(LPI).The morphology and chemical composition of fine ash were analyzed by scanning electron microscopy equipped with an energydispersive spectrometer(SEM-EDS).In addition,char/ash particles were sampled at various positions of DTF to elucidate how kaolin additive affected the fine ash formation process.The results further showed that apart from the scavenging of volatile Na,kaolin additive could also strongly scavenge the refractory Ca,Mg and Fe in the fine ash during Zhundong coal combustion,which transformed the sintered particles with irregular shape into melted spherical particles,and finally resulted in the considerable decrease of these elements in both PM_(0.4)and PM_(0.4-10)by melting and agglomeration.The close contacts between kaolin particles and coal resulted from physically mixing were a key factor responsible for the reaction of kaolin with the refractory Ca,Mg and Fe.展开更多
基金the National Key Research and Development Program of China(No.2016YFB0600601)National Natural Science Foundation of China(Nos.51676075 and 51520105008).
文摘The previous work found that the additive kaolin could scavenge not only sodium(Na)but also calcium(Ca)and magnesium(Mg),which is the important ash fluxing agents in low rank coal combustion.Such scavenging effects of kaolin on fine ash formation were studied in the present work.A typical Zhundong coal and its blends with kaolin at dosages of 1,2 and 4 wt%were combusted in an electrically heated drop tube furnace(DTF)at 1300℃.The fine ashes generated were collected and size segregated by a low pressure impactor(LPI).The morphology and chemical composition of fine ash were analyzed by scanning electron microscopy equipped with an energydispersive spectrometer(SEM-EDS).In addition,char/ash particles were sampled at various positions of DTF to elucidate how kaolin additive affected the fine ash formation process.The results further showed that apart from the scavenging of volatile Na,kaolin additive could also strongly scavenge the refractory Ca,Mg and Fe in the fine ash during Zhundong coal combustion,which transformed the sintered particles with irregular shape into melted spherical particles,and finally resulted in the considerable decrease of these elements in both PM_(0.4)and PM_(0.4-10)by melting and agglomeration.The close contacts between kaolin particles and coal resulted from physically mixing were a key factor responsible for the reaction of kaolin with the refractory Ca,Mg and Fe.