A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data ac...A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data acquisition and processing functions, the gateway supports the Bluetooth-based local interface and the general packet radio service (GPRS)-based remote interface. Users on the client service side can use a pocket PC or notebook PC to achieve real-time data acquisition and control instruction implementation, or remotely control the home control system through a mobile phone by sending a short message. The Labview graphical development environment is adopted to create PDA applications running on pocket PCs and monitoring platform established on notebook PCs. Except for the gateway, other nodes in the system work in sleep mode most of the time on the system, and thus it improves the lifetime of the whole system efficiently.展开更多
In a wireless sensor network (WSN), the energy of nodes is limited and cannot be charged. Hence, it is necessary to reduce energy consumption. Both the transmission power of nodes and the interference among nodes in...In a wireless sensor network (WSN), the energy of nodes is limited and cannot be charged. Hence, it is necessary to reduce energy consumption. Both the transmission power of nodes and the interference among nodes influence energy consumption. In this paper, we design a power control and channel allocation game model with low energy consumption (PCCAGM). This model contains transmission power, node interference, and residual energy. Besides, the interaction between power and channel is considered. The Nash equilibrium has been proved to exist. Based on this model, a power control and channel allocation optimization algorithm with low energy consumption (PCCAA) is proposed. Theoretical analysis shows that PCCAA can converge to the Pareto Optimal. Simulation results demonstrate that this algorithm can reduce transmission power and interference effectively. Therefore, this algorithm can reduce energy consumption and prolong the network lifetime.展开更多
In the study of intelligent space oriented to home service robot, an important technology is how to construct an communication network which has the characters of high reliability and easy building. In this paper, bas...In the study of intelligent space oriented to home service robot, an important technology is how to construct an communication network which has the characters of high reliability and easy building. In this paper, based on the characteristics of ZigBee protocol, ZigBee technology is used to construct a wireless sensor and actor network. Several intelligent services based on ZigBee wireless sensor and actor network are shown to certify the reliability of this communication network. ZigBee wireless sensor and actor network builds an information bridge for the components in the intelligent space, the spatially distributed devices are connected together seamlessly. With this network, robot can share the mass information in the intelligent space and improve its performance with 'light-packs', devices in intelligent space, such as lamp, curtain can be controlled autonomously.展开更多
Wireless sensor and actuator network is the key technology of service robot intelligent space. This paper is concerned with design and implementation of a ZigBee based wireless sensor and actuator network (hereinafter...Wireless sensor and actuator network is the key technology of service robot intelligent space. This paper is concerned with design and implementation of a ZigBee based wireless sensor and actuator network (hereinafter referred to as ZWSAN), which has been applied in our service robot intelligent space successfully. Firstly, a simplified ZigBee stack applied to ZWSAN is proposed and the primitives of the stack are illustrated after a short overview of ZigBee protocols. Then the implementation of hardware module and software stack is introduced in detail as well as several representative devices integrated into ZWSAN, including environmental sensors for environmental perception, home devices controllers for device control, embedded speech recognition module for speech control, IMU module for abnormal behaviors detection and laser robot control for service robot navigation. An application example is described to demonstrate how the devices in ZWSAN to provide service cooperatively. Finally, we conclude this paper and discuss the future directions.展开更多
In this paper, a two-tiered Wireless Sensor Network (WSN) where nodes are divided into clusters and nodes forward data to base stations through cluster heads is considered. To maximize the network lifetime, two energy...In this paper, a two-tiered Wireless Sensor Network (WSN) where nodes are divided into clusters and nodes forward data to base stations through cluster heads is considered. To maximize the network lifetime, two energy efficient approaches are investigated. We first propose an approach that optimally locates the base stations within the network so that the distance between each cluster head and its closest base station is decreased. Then, a routing technique is developed to arrange the communication between cluster heads toward the base stations in order to guaranty that the gathered information effectively and efficiently reach the application. The overall dynamic framework that combines the above two schemes is described and evaluated. The experimental performance evaluation demonstrates the efficacy of topology control as a vital process to maximize the network lifetime of WSNs.展开更多
In marine wireless sensor networks(MWSNs),an appropriate routing protocol is the key to the collaborative collection and efficient transmission of massive data.However,designing an appropriate routing protocol under t...In marine wireless sensor networks(MWSNs),an appropriate routing protocol is the key to the collaborative collection and efficient transmission of massive data.However,designing an appropriate routing protocol under the condition of sparse marine node deployment,highly dynamic network topology,and limited node energy is complicated.Moreover,the absence of continuous endto-end connection introduces further difficulties in the design of routing protocols.In this case,we present a novel energy-efficient opportunistic routing(Novel Energy-Efficient Opportunistic Routing,NEOR)protocol for MWSNs that is based on compressed sensing and power control.First,a lightweight time-series prediction method-weighted moving average method is proposed to predict the packet advancement value such that the number of location information that is exchanged among a node and its neighbor nodes can be minimized.Second,an adaptive power control mechanism is presented to determine the optimal transmitting power and candidate nodeset on the basis of node mobility,packet advancement,communication link quality,and remaining node energy.Subsequently,a timer-based scheduling algorithm is utilized to coordinate packet forwarding to avoid packet conflict.Furthermore,we introduce the compressed sensing theory to compress perceptual data at source nodes and reconstruct the original data at sink nodes.Therefore,energy consumption in the MWSNs is greatly reduced due to the decrease in the amount of data perception and transmission.Numerical simulation experiments are carried out in a wide range of marine scenarios to verify the superiority of our approach over selected benchmark algorithms.展开更多
Wireless Sensor Network (WSN) is characterized by the dense deployment of sensor nodes that continuously observe physical phenomenon. The main advantages of WSN include its low cost, rapid deployment, self-organizat...Wireless Sensor Network (WSN) is characterized by the dense deployment of sensor nodes that continuously observe physical phenomenon. The main advantages of WSN include its low cost, rapid deployment, self-organization, and fault tolerance. WSN has received tremendous interests of various research communities,展开更多
To satisfy the need of good quality and high yield primary production,the farmland information management system based on wireless Sensor Network has been proposed.We give priority to analyzing the basic function of t...To satisfy the need of good quality and high yield primary production,the farmland information management system based on wireless Sensor Network has been proposed.We give priority to analyzing the basic function of the system,building the systematic structure of applied system and network system,and implementing the energy control and safety design of system.The system can reduce manpower operation and the error of manual measuration in the course of practical production,reduce the cost of agricultural production,and realize automatization of agricultural production to the largest extent to provide an effective way to realize good quality and high yield primary production,which has an important realistic meaning.展开更多
Food security and sustainable development is making a mandatory move in the entire human race.The attainment of this goal requires man to strive for a highly advanced state in thefield of agriculture so that he can pro...Food security and sustainable development is making a mandatory move in the entire human race.The attainment of this goal requires man to strive for a highly advanced state in thefield of agriculture so that he can produce crops with a minimum amount of water and fertilizer.Even though our agricultural methodol-ogies have undergone a series of metamorphoses in the process of a present smart-agricultural system,a long way is ahead to attain a system that is precise and accurate for the optimum yield and profitability.Towards such a futuristic method of cultivation,this paper proposes a novel method for monitoring the efficientflow of a small quantity of water through the conventional irrigation system in cultiva-tion using Clustered Wireless Sensor Networks(CWSN).The performance measure is simulated the creation of edge-fixed geodetic clusters using Mat lab’s Cup-carbon tool in order to evaluate the suggested irrigation process model’s performance.Thefindings of blocks 1 and 2 are assessed.Each signal takes just a little amount of energy to communicate,according to the performance.It is feasible to save energy while maintaining uninterrupted communication between nodes and cluster chiefs.However,the need for proper placement of a dynamic control station in WSN still exists for maintaining connectivity and for improving the lifetime fault tolerance of WSN.Based on the minimum edgefixed geodetic sets of the connected graph,this paper offers an innovative method for optimizing the placement of control stations.The edge-fixed geodetic cluster makes the network fast,efficient and reliable.Moreover,it also solves routing and congestion problems.展开更多
Wireless Sensor Networks(WSNs)are large-scale and high-density networks that typically have coverage area overlap.In addition,a random deployment of sensor nodes cannot fully guarantee coverage of the sensing area,whi...Wireless Sensor Networks(WSNs)are large-scale and high-density networks that typically have coverage area overlap.In addition,a random deployment of sensor nodes cannot fully guarantee coverage of the sensing area,which leads to coverage holes in WSNs.Thus,coverage control plays an important role in WSNs.To alleviate unnecessary energy wastage and improve network performance,we consider both energy efficiency and coverage rate for WSNs.In this paper,we present a novel coverage control algorithm based on Particle Swarm Optimization(PSO).Firstly,the sensor nodes are randomly deployed in a target area and remain static after deployment.Then,the whole network is partitioned into grids,and we calculate each grid’s coverage rate and energy consumption.Finally,each sensor nodes’sensing radius is adjusted according to the coverage rate and energy consumption of each grid.Simulation results show that our algorithm can effectively improve coverage rate and reduce energy consumption.展开更多
Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless se...Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.展开更多
Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of...Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes.展开更多
In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical a...In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations.展开更多
Wireless sensor network(WSN)is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains.Many sensor nodes with different sensing functionalities are deployed ...Wireless sensor network(WSN)is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains.Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway.Ensuring communications in heterogeneous WSNs,is a critical issue that needs to be studied.In this research paper,we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communication.Specifically,two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway.The overall system integrates many different sensors in terms of types,communication protocols,and accuracy,which can be used in many applications in realistic environments such as on land,under water,or in the air.In addition to this,a synchronous management software on ThingSpeak Web server and Blynk app is designed.In the proposed system,the token ring protocol in Zigbee network and polling mechanism in LoRa network is used.The system can operate with a packet loss rate of less than 0.5%when the communication range of the Zigbee network is 630 m,and the communication range of the LoRa network is 3.7 km.On the basis of the digital results collected on the management software,this study proves tremendous improvements in the system performance.展开更多
The article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text quite like the one published in other journal. The problem is ...The article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text quite like the one published in other journal. The problem is under investigation. This paper published in Vol.4 No.1, 2012, has been removed from this site temporally.展开更多
This paper proposes an approach called PC-CORP (Power Control based Cooperative Opportunistic Routing Protocol) for WSN (Wireless Sensor Networks), providing robustness to the random variations in network connectivity...This paper proposes an approach called PC-CORP (Power Control based Cooperative Opportunistic Routing Protocol) for WSN (Wireless Sensor Networks), providing robustness to the random variations in network connectivity while ensuring better data forwarding efficiency in an energy efficient manner. Based on the realistic radio model, we combine the region-based routing, rendezvous scheme, sleep discipline and cooperative communication together to model data forwarding by cross layer design in WSN. At the same time, a lightweight transmission power control algorithm called PC-AIMD (Power Control Additive Increase Multiplicative Decrease) is introduced to utilize the co- operation of relay nodes to improve the forwarding efficiency performance and increase the robustness of the routing protocol. In the simulation, the performance of PC-COPR is investigated in terms of the adaptation of variations in network connectivity and satisfying the QoS requirements of application.展开更多
In monitoring Wireless Sensor Networks(WSNs),the traffic usually has bursty characteristics when an event occurs.Transient congestion would increase delay and packet loss rate severely,which greatly reduces network pe...In monitoring Wireless Sensor Networks(WSNs),the traffic usually has bursty characteristics when an event occurs.Transient congestion would increase delay and packet loss rate severely,which greatly reduces network performance.To solve this problem,we propose a Burstiness-aware Congestion Control Protocol(BCCP) for wireless sensor networks.In BCCP,the backoff delay is adopted as a congestion indication.Normally,sensor nodes work on contention-based MAC protocol(such as CSMA/CA).However,when congestion occurs,localized TDMA instead of CSMA/CA is embedded into the nodes around the congestion area.Thus,the congestion nodes only deliver their data during their assigned slots to alleviate the contention-caused congestion.Finally,we implement BCCP in our sensor network testbed.The experiment results show that BCCP could detect area congestion in time,and improve the network performance significantly in terms of delay and packet loss rate.展开更多
The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-ener...The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-energy path-preserving topology control (MPTC) algorithm based on a concept of none k-redundant edges. MPTC not only resolves the problem of excessive energy consumption because of the unclosed region in small minimum-energy communication network (SMECN), but also preserves at least one minimum-energy path between every pair of nodes in a wireless sensor network. We also propose an energy-efficient reconfiguration protocol that maintains the minimum-energy path property in the case where the network topology changes dynamically. Finally, we demonstrate the performance improvements of our algorithm through simulation.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
基金The National High Technology Research and Development Program of China (863Program) (No.2006AA01Z221)the NationalNatural Science Foundation of China (No.60875070)+1 种基金the Innovation Project of Graduate Students of Jiangsu Province (No.CX08B-049Z)Southeast University Teaching and Research Foundation
文摘A new scheme of the home control system based on ZigBee wireless sensor networks is presented. The design and development of the software and hardware of the proposed system are given. In addition to the basic data acquisition and processing functions, the gateway supports the Bluetooth-based local interface and the general packet radio service (GPRS)-based remote interface. Users on the client service side can use a pocket PC or notebook PC to achieve real-time data acquisition and control instruction implementation, or remotely control the home control system through a mobile phone by sending a short message. The Labview graphical development environment is adopted to create PDA applications running on pocket PCs and monitoring platform established on notebook PCs. Except for the gateway, other nodes in the system work in sleep mode most of the time on the system, and thus it improves the lifetime of the whole system efficiently.
基金Project supported by the National Natural Science Foundation of China(Grant No.61403336)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2015203342 and F2015203291)the Independent Research Project Topics B Category for Young Teacher of Yanshan University,China(Grant No.15LGB007)
文摘In a wireless sensor network (WSN), the energy of nodes is limited and cannot be charged. Hence, it is necessary to reduce energy consumption. Both the transmission power of nodes and the interference among nodes influence energy consumption. In this paper, we design a power control and channel allocation game model with low energy consumption (PCCAGM). This model contains transmission power, node interference, and residual energy. Besides, the interaction between power and channel is considered. The Nash equilibrium has been proved to exist. Based on this model, a power control and channel allocation optimization algorithm with low energy consumption (PCCAA) is proposed. Theoretical analysis shows that PCCAA can converge to the Pareto Optimal. Simulation results demonstrate that this algorithm can reduce transmission power and interference effectively. Therefore, this algorithm can reduce energy consumption and prolong the network lifetime.
文摘In the study of intelligent space oriented to home service robot, an important technology is how to construct an communication network which has the characters of high reliability and easy building. In this paper, based on the characteristics of ZigBee protocol, ZigBee technology is used to construct a wireless sensor and actor network. Several intelligent services based on ZigBee wireless sensor and actor network are shown to certify the reliability of this communication network. ZigBee wireless sensor and actor network builds an information bridge for the components in the intelligent space, the spatially distributed devices are connected together seamlessly. With this network, robot can share the mass information in the intelligent space and improve its performance with 'light-packs', devices in intelligent space, such as lamp, curtain can be controlled autonomously.
文摘Wireless sensor and actuator network is the key technology of service robot intelligent space. This paper is concerned with design and implementation of a ZigBee based wireless sensor and actuator network (hereinafter referred to as ZWSAN), which has been applied in our service robot intelligent space successfully. Firstly, a simplified ZigBee stack applied to ZWSAN is proposed and the primitives of the stack are illustrated after a short overview of ZigBee protocols. Then the implementation of hardware module and software stack is introduced in detail as well as several representative devices integrated into ZWSAN, including environmental sensors for environmental perception, home devices controllers for device control, embedded speech recognition module for speech control, IMU module for abnormal behaviors detection and laser robot control for service robot navigation. An application example is described to demonstrate how the devices in ZWSAN to provide service cooperatively. Finally, we conclude this paper and discuss the future directions.
文摘In this paper, a two-tiered Wireless Sensor Network (WSN) where nodes are divided into clusters and nodes forward data to base stations through cluster heads is considered. To maximize the network lifetime, two energy efficient approaches are investigated. We first propose an approach that optimally locates the base stations within the network so that the distance between each cluster head and its closest base station is decreased. Then, a routing technique is developed to arrange the communication between cluster heads toward the base stations in order to guaranty that the gathered information effectively and efficiently reach the application. The overall dynamic framework that combines the above two schemes is described and evaluated. The experimental performance evaluation demonstrates the efficacy of topology control as a vital process to maximize the network lifetime of WSNs.
基金supported by the National Natural Science Foundation of China(Nos.52201403,52201401,52071200,52102397,61701299,51709167)the National Key Research and Development Program(No.2021YFC2801002)+4 种基金the China Postdoctoral Science Foundation(Nos.2021M 700790,2022M712027)the Fund of National Engineering Research Center for Water Transport Safety(No.A2022003)the Foundation for Jiangsu Key Laboratory of Traffic and Transportation Security(No.TTS2021-05)the Fund of Hubei Key Laboratory of Inland Shipping Technology(No.NHHY2021002)the Top-Notch Innovative Program for Postgraduates of Shanghai Maritime University(Nos.2019YBR006,2019YBR002).
文摘In marine wireless sensor networks(MWSNs),an appropriate routing protocol is the key to the collaborative collection and efficient transmission of massive data.However,designing an appropriate routing protocol under the condition of sparse marine node deployment,highly dynamic network topology,and limited node energy is complicated.Moreover,the absence of continuous endto-end connection introduces further difficulties in the design of routing protocols.In this case,we present a novel energy-efficient opportunistic routing(Novel Energy-Efficient Opportunistic Routing,NEOR)protocol for MWSNs that is based on compressed sensing and power control.First,a lightweight time-series prediction method-weighted moving average method is proposed to predict the packet advancement value such that the number of location information that is exchanged among a node and its neighbor nodes can be minimized.Second,an adaptive power control mechanism is presented to determine the optimal transmitting power and candidate nodeset on the basis of node mobility,packet advancement,communication link quality,and remaining node energy.Subsequently,a timer-based scheduling algorithm is utilized to coordinate packet forwarding to avoid packet conflict.Furthermore,we introduce the compressed sensing theory to compress perceptual data at source nodes and reconstruct the original data at sink nodes.Therefore,energy consumption in the MWSNs is greatly reduced due to the decrease in the amount of data perception and transmission.Numerical simulation experiments are carried out in a wide range of marine scenarios to verify the superiority of our approach over selected benchmark algorithms.
文摘Wireless Sensor Network (WSN) is characterized by the dense deployment of sensor nodes that continuously observe physical phenomenon. The main advantages of WSN include its low cost, rapid deployment, self-organization, and fault tolerance. WSN has received tremendous interests of various research communities,
基金Supported by National 863 Plan Project (2008AA10Z220 )Key Technological Task Project of Henan Agricultural Domain(082102140004)~~
文摘To satisfy the need of good quality and high yield primary production,the farmland information management system based on wireless Sensor Network has been proposed.We give priority to analyzing the basic function of the system,building the systematic structure of applied system and network system,and implementing the energy control and safety design of system.The system can reduce manpower operation and the error of manual measuration in the course of practical production,reduce the cost of agricultural production,and realize automatization of agricultural production to the largest extent to provide an effective way to realize good quality and high yield primary production,which has an important realistic meaning.
文摘Food security and sustainable development is making a mandatory move in the entire human race.The attainment of this goal requires man to strive for a highly advanced state in thefield of agriculture so that he can produce crops with a minimum amount of water and fertilizer.Even though our agricultural methodol-ogies have undergone a series of metamorphoses in the process of a present smart-agricultural system,a long way is ahead to attain a system that is precise and accurate for the optimum yield and profitability.Towards such a futuristic method of cultivation,this paper proposes a novel method for monitoring the efficientflow of a small quantity of water through the conventional irrigation system in cultiva-tion using Clustered Wireless Sensor Networks(CWSN).The performance measure is simulated the creation of edge-fixed geodetic clusters using Mat lab’s Cup-carbon tool in order to evaluate the suggested irrigation process model’s performance.Thefindings of blocks 1 and 2 are assessed.Each signal takes just a little amount of energy to communicate,according to the performance.It is feasible to save energy while maintaining uninterrupted communication between nodes and cluster chiefs.However,the need for proper placement of a dynamic control station in WSN still exists for maintaining connectivity and for improving the lifetime fault tolerance of WSN.Based on the minimum edgefixed geodetic sets of the connected graph,this paper offers an innovative method for optimizing the placement of control stations.The edge-fixed geodetic cluster makes the network fast,efficient and reliable.Moreover,it also solves routing and congestion problems.
基金This research work was supported by the National Natural Science Foundation of China(61772454,61811530332).Professor Gwang-jun Kim is the corresponding author.
文摘Wireless Sensor Networks(WSNs)are large-scale and high-density networks that typically have coverage area overlap.In addition,a random deployment of sensor nodes cannot fully guarantee coverage of the sensing area,which leads to coverage holes in WSNs.Thus,coverage control plays an important role in WSNs.To alleviate unnecessary energy wastage and improve network performance,we consider both energy efficiency and coverage rate for WSNs.In this paper,we present a novel coverage control algorithm based on Particle Swarm Optimization(PSO).Firstly,the sensor nodes are randomly deployed in a target area and remain static after deployment.Then,the whole network is partitioned into grids,and we calculate each grid’s coverage rate and energy consumption.Finally,each sensor nodes’sensing radius is adjusted according to the coverage rate and energy consumption of each grid.Simulation results show that our algorithm can effectively improve coverage rate and reduce energy consumption.
文摘Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.
基金Project (Nos. 60074011 and 60574049) supported by the National Natural Science Foundation of China
文摘Wireless technology is applied increasingly in networked control systems. A new form of wireless network called wireless sensor network can bring control systems some advantages, such as flexibility and feasibility of network deployment at low costs, while it also raises some new challenges. First, the communication resources shared by all the control loops are limited. Second, the wireless and multi-hop character of sensor network makes the resources scheduling more difficult. Thus, how to effectively allocate the limited communication resources for those control loops is an important problem. In this paper, this problem is formulated as an optimal sampling frequency assignment problem, where the objective function is to maximize the utility of control systems, subject to channel capacity constraints. Then an iterative distributed algorithm based on local buffer information is proposed. Finally, the simulation results show that the proposed algorithm can effectively allocate the limited communication resource in a distributed way. It can achieve the optimal quality of the control system and adapt to the network load changes.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61103231 and 61103230)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012082)+2 种基金the Innovation Program of Graduate Scientific Research in Institution of Higher Education of Jiangsu Province,China (Grant No. CXZZ11 0401)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2011JM8012)the Basic Research Foundation of Engineering University of the Chinese People’s Armed Police Force (Grant No. WJY201218)
文摘In this paper, an extended version of standard susceptible-infected (SI) model is proposed to consider the influence of a medium access control mechanism on virus spreading in wireless sensor networks. Theoretical analysis shows that the medium access control mechanism obviously reduces the density of infected nodes in the networks, which has been ignored in previous studies. It is also found that by increasing the network node density or node communication radius greatly increases the number of infected nodes. The theoretical results are confirmed by numerical simulations.
文摘Wireless sensor network(WSN)is considered as the fastest growing technology pattern in recent years because of its applicability in varied domains.Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway.Ensuring communications in heterogeneous WSNs,is a critical issue that needs to be studied.In this research paper,we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communication.Specifically,two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway.The overall system integrates many different sensors in terms of types,communication protocols,and accuracy,which can be used in many applications in realistic environments such as on land,under water,or in the air.In addition to this,a synchronous management software on ThingSpeak Web server and Blynk app is designed.In the proposed system,the token ring protocol in Zigbee network and polling mechanism in LoRa network is used.The system can operate with a packet loss rate of less than 0.5%when the communication range of the Zigbee network is 630 m,and the communication range of the LoRa network is 3.7 km.On the basis of the digital results collected on the management software,this study proves tremendous improvements in the system performance.
文摘The article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text quite like the one published in other journal. The problem is under investigation. This paper published in Vol.4 No.1, 2012, has been removed from this site temporally.
基金Supported by 973 Program (2007CB310607)National Natural Science Foundation of China (60772062)the Open Research Fund of National Mobile Communications Research Laboratory, Southeast University (N200813)
文摘This paper proposes an approach called PC-CORP (Power Control based Cooperative Opportunistic Routing Protocol) for WSN (Wireless Sensor Networks), providing robustness to the random variations in network connectivity while ensuring better data forwarding efficiency in an energy efficient manner. Based on the realistic radio model, we combine the region-based routing, rendezvous scheme, sleep discipline and cooperative communication together to model data forwarding by cross layer design in WSN. At the same time, a lightweight transmission power control algorithm called PC-AIMD (Power Control Additive Increase Multiplicative Decrease) is introduced to utilize the co- operation of relay nodes to improve the forwarding efficiency performance and increase the robustness of the routing protocol. In the simulation, the performance of PC-COPR is investigated in terms of the adaptation of variations in network connectivity and satisfying the QoS requirements of application.
基金supported in part by National Key Basic Research Program of China(973 program)under Grant No.2007CB307101National Natural Science Foundation of China under Grant No.60833002,60802016,60972010
文摘In monitoring Wireless Sensor Networks(WSNs),the traffic usually has bursty characteristics when an event occurs.Transient congestion would increase delay and packet loss rate severely,which greatly reduces network performance.To solve this problem,we propose a Burstiness-aware Congestion Control Protocol(BCCP) for wireless sensor networks.In BCCP,the backoff delay is adopted as a congestion indication.Normally,sensor nodes work on contention-based MAC protocol(such as CSMA/CA).However,when congestion occurs,localized TDMA instead of CSMA/CA is embedded into the nodes around the congestion area.Thus,the congestion nodes only deliver their data during their assigned slots to alleviate the contention-caused congestion.Finally,we implement BCCP in our sensor network testbed.The experiment results show that BCCP could detect area congestion in time,and improve the network performance significantly in terms of delay and packet loss rate.
基金supported by by National Natural Science Founda-tion of China (No. 60702055)Program for New Century ExcellentTalents in University (NCET-07-0914)the Science and Technology Research Project of Chongqing Municipal Education Commission of China (KJ070521)
文摘The topology control strategies of wireless sensor networks are very important for reducing the energy consumption of sensor nodes and prolonging the life-span of networks. In this paper, we put forward a minimum-energy path-preserving topology control (MPTC) algorithm based on a concept of none k-redundant edges. MPTC not only resolves the problem of excessive energy consumption because of the unclosed region in small minimum-energy communication network (SMECN), but also preserves at least one minimum-energy path between every pair of nodes in a wireless sensor network. We also propose an energy-efficient reconfiguration protocol that maintains the minimum-energy path property in the case where the network topology changes dynamically. Finally, we demonstrate the performance improvements of our algorithm through simulation.