期刊文献+
共找到62,960篇文章
< 1 2 250 >
每页显示 20 50 100
Vanadium oxide nanospheres encapsulated in N-doped carbon nanofibers with morphology and defect dual-engineering toward advanced aqueous zinc-ion batteries
1
作者 Yunfei Song Laiying Jing +3 位作者 Rutian Wang Jiaxi Cui Mei Li Yunqiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期599-609,I0013,共12页
Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high ... Vanadium-based electrodes are regarded as attractive cathode materials in aqueous zinc ion batteries(ZIBs)caused by their high capacity and unique layered structure.However,it is extremely challenging to acquire high electrochemical performance owing to the limited electronic conductivity,sluggish ion kinetics,and severe volume expansion during the insertion/extraction process of Zn^(2+).Herein,a series of V_(2)O_(3)nanospheres embedded N-doped carbon nanofiber structures with various V_(2)O_(3)spherical morphologies(solid,core-shell,hollow)have been designed for the first time by an electrospinning technique followed thermal treatments.The N-doped carbon nanofibers not only improve the electrical conductivity and the structural stability,but also provides encapsulating shells to prevent the vanadium dissolution and aggregation of V_(2)O_(3)particles.Furthermore,the varied morphological structures of V_(2)O_(3)with abundant oxygen vacancies can alleviate the volume change and increase the Zn^(2+)pathway.Besides,the phase transition between V_(2)O_(3)and Zn_XV_(2)O_(5-m)·n H_(2)O in the cycling was also certified.As a result,the as-obtained composite delivers excellent long-term cycle stability and enhanced rate performance for coin cells,which is also confirmed through density functional theory(DFT)calculations.Even assembled into flexible ZIBs,the sample still exhibits superior electrochemical performance,which may afford new design concept for flexible cathode materials of ZIBs. 展开更多
关键词 Aqueous zinc ion batteries Vanadium trioxide Oxygen vacancy Structure evolution Phase optimization
下载PDF
Double-Doped Carbon-Based Electrodes with Nitrogen and Oxygen to Boost the Areal Capacity of Zinc-Bromine Flow Batteries
2
作者 Xiaoyun Sun Deren Wang +4 位作者 Haochen Hu Xin Wei Lin Meng Zhongshan Ren Sensen Li 《Transactions of Tianjin University》 EI CAS 2024年第1期74-89,共16页
Ensuring a stable power output from renewable energy sources,such as wind and solar energy,depends on the development of large-scale and long-duration energy storage devices.Zinc–bromine fl ow batteries(ZBFBs)have em... Ensuring a stable power output from renewable energy sources,such as wind and solar energy,depends on the development of large-scale and long-duration energy storage devices.Zinc–bromine fl ow batteries(ZBFBs)have emerged as cost-eff ective and high-energy-density solutions,replacing expensive all-vanadium fl ow batteries.However,uneven Zn deposition during charging results in the formation of problematic Zn dendrites,leading to mass transport polarization and self-discharge.Stable Zn plating and stripping are essential for the successful operation of high-areal-capacity ZBFBs.In this study,we successfully synthesized nitrogen and oxygen co-doped functional carbon felt(NOCF4)electrode through the oxidative polymerization of dopamine,followed by calcination under ambient conditions.The NOCF4 electrode eff ectively facilitates effi cient“shuttle deposition”of Zn during charging,signifi cantly enhancing the areal capacity of the electrode.Remarkably,ZBFBs utilizing NOCF4 as the anode material exhibited stable cycling performance for 40 cycles(approximately 240 h)at an areal capacity of 60 mA h/cm^(2).Even at a high areal capacity of 130 mA h/cm^(2),an impressive energy effi ciency of 76.98%was achieved.These fi ndings provide a promising pathway for the development of high-areal-capacity ZBFBs for advanced energy storage systems. 展开更多
关键词 zinc-bromine fl ow batteries N O co-doping Areal capacity Shuttle deposition zinc dendrite
下载PDF
Heteroatoms doped iron oxide-based catalyst prepared from zinc slag for efficient selective catalytic reduction of NOx with NH3
3
作者 Jiale Liang Yaojun Zhang +3 位作者 Hao Chen Licai Liu Panyang He Lei Wu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期180-193,共14页
Excessive emissions of nitrogen oxides from flue gas have imposed various detrimental impacts on environment,and the development of deNO_(x) catalysts with low-cost and high performance is an urgent requirement.Iron o... Excessive emissions of nitrogen oxides from flue gas have imposed various detrimental impacts on environment,and the development of deNO_(x) catalysts with low-cost and high performance is an urgent requirement.Iron oxide-based material has been explored for promising deNO_(x) catalysts.However,the unsatisfactory low-temperature activity limits their practical applications.In this study,a series of excellent low-temperature denitrification catalysts(Ha-FeO_(x)/yZS)were prepared by acid treatment of zinc slag,and the mass ratios of Fe to impure ions was regulated by adjusting the acid concentrations.Ha-FeO_(x)/yZS showed high denitrification performance(>90%)in the range of 180–300°C,and the optimal NO conversion and N2 selectivity were higher than 95%at 250°C.Among them,the Ha-FeO_(x)/2ZS synthesized with 2 mol/L HNO3 exhibited the widest temperature window(175–350°C).The excellent denitrification performance of Ha-FeO_(x)/yZS was mainly attributed to the strong interaction between Fe and impurity ions to inhibit the growth of crystals,making Ha-FeO_(x)/yZS with amorphous structure,nice fine particles,large specific surface area,more surface acid sites and high chemisorbed oxygen.The in-situ DRIFT experiments confirmed that the SCR reaction on the Ha-FeO_(x)/yZS followed both Langmuir-Hinshelwood(L-H)mechanism and Eley-Rideal(E-R)mechanism.The present work proposed a high value-added method for the preparation of cost-effective catalysts from zinc slag,which showed a promising application prospect in NO_(x) removal by selective catalytic reduction with ammonia. 展开更多
关键词 Flue gas NO_(x)removal zinc slag-derived catalyst NH_(3)-SCR Catalysis activity
下载PDF
Electronic and thermal properties of Ag-doped single crystal zinc oxide via laser-induced technique 被引量:1
4
作者 邢欢 王惠琼 +5 位作者 宋廷鲁 李纯莉 戴扬 傅耿明 康俊勇 郑金成 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期44-51,共8页
The doping of ZnO has attracted lots of attention because it is an important way to tune the properties of ZnO.Postdoping after growth is one of the efficient strategies.Here,we report a unique approach to successfull... The doping of ZnO has attracted lots of attention because it is an important way to tune the properties of ZnO.Postdoping after growth is one of the efficient strategies.Here,we report a unique approach to successfully dope the single crystalline ZnO with Ag by the laser-induced method,which can effectively further post-treat grown samples.Magnetron sputtering was used to coat the Ag film with a thickness of about 50 nm on the single crystalline ZnO.Neodymium-doped yttrium aluminum garnet(Nd:YAG)laser was chosen to irradiate the Ag-capped ZnO samples,followed by annealing at700℃for two hours to form ZnO:Ag.The three-dimensional(3D)information of the elemental distribution of Ag in ZnO was obtained through time-of-flight secondary ion mass spectrometry(TOF-SIMS).TOF-SIMS and core-level x-ray photoelectron spectroscopy(XPS)demonstrated that the Ag impurities could be effectively doped into single crystalline ZnO samples as deep as several hundred nanometers.Obvious broadening of core level XPS profiles of Ag from the surface to depths of hundred nms was observed,indicating the variance of chemical state changes in laser-induced Ag-doped ZnO.Interesting features of electronic mixing states were detected in the valence band XPS of ZnO:Ag,suggesting the strong coupling or interaction of Ag and ZnO in the sample rather than their simple mixture.The Ag-doped ZnO also showed a narrower bandgap and a decrease in thermal diffusion coefficient compared to the pure ZnO,which would be beneficial to thermoelectric performance. 展开更多
关键词 zinc oxide Ag-doping laser-induced technique XPS SIMS thermal diffusivity
下载PDF
Designing interstitial boron-doped tunnel-type vanadium dioxide cathode for enhancing zinc ion storage capability
5
作者 Shiwen Wang Hang Zhang +7 位作者 Kang Zhao Wenqing Liu Nairui Luo Jianan Zhao Shide Wu Junwei Ding Shaoming Fang Fangyi Cheng 《Carbon Energy》 SCIE CSCD 2023年第8期78-86,共9页
Chemical doping is a powerful method to intrinsically tailor the electrochemical properties of electrode materials.Here,an interstitial boron-doped tunnel-type VO_(2)(B)is constructed via a facile hydrothermal method.... Chemical doping is a powerful method to intrinsically tailor the electrochemical properties of electrode materials.Here,an interstitial boron-doped tunnel-type VO_(2)(B)is constructed via a facile hydrothermal method.Various analysis techniques demonstrate that boron resides in the interstitial site of VO_(2)(B)and such interstitial doping can boost the zinc storage kinetics and structural stability of VO_(2)(B)cathode during cycling.Interestingly,we found that the boron doping level has a saturation limit peculiarity as proved by the quantitative analysis.Notably,the 2 at.%boron-doped VO_(2)(B)shows enhanced zinc ion storage performance with a high storage capacity of 281.7 mAh g^(-1) at 0.1 A g^(-1),excellent rate performance of 142.2 mAh g^(-1) at 20 A g^(-1),and long cycle stability up to 1000 cycles with the capacity retention of 133.3 mAh g^(-1) at 5 A g^(-1).Additionally,the successful preparation of the boron-doped tunneltype α-MnO_(2) further indicates that the interstitial boron doping approach is a general strategy,which supplies a new chance to design other types of functional electrode materials for multivalence batteries. 展开更多
关键词 CATHODE interstitial boron doping tunnel-type VO_(2)(B) zinc ion battery
下载PDF
An Electrochemical Perspective of Aqueous Zinc Metal Anode 被引量:1
6
作者 Huibo Yan Songmei Li +1 位作者 Jinyan Zhong Bin Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期274-312,共39页
Based on the attributes of nonflammability,environmental benignity,and cost-effectiveness of aqueous electrolytes,as well as the favorable compatibility of zinc metal with them,aqueous zinc ions batteries(AZIBs)become... Based on the attributes of nonflammability,environmental benignity,and cost-effectiveness of aqueous electrolytes,as well as the favorable compatibility of zinc metal with them,aqueous zinc ions batteries(AZIBs)become the leading energy storage candidate to meet the requirements of safety and low cost.Yet,aqueous electrolytes,acting as a double-edged sword,also play a negative role by directly or indirectly causing various parasitic reactions at the zinc anode side.These reactions include hydrogen evolution reaction,passivation,and dendrites,resulting in poor Coulombic efficiency and short lifespan of AZIBs.A comprehensive review of aqueous electrolytes chemistry,zinc chemistry,mechanism and chemistry of parasitic reactions,and their relationship is lacking.Moreover,the understanding of strategies for suppressing parasitic reactions from an electrochemical perspective is not profound enough.In this review,firstly,the chemistry of electrolytes,zinc anodes,and parasitic reactions and their relationship in AZIBs are deeply disclosed.Subsequently,the strategies for suppressing parasitic reactions from the perspective of enhancing the inherent thermodynamic stability of electrolytes and anodes,and lowering the dynamics of parasitic reactions at Zn/electrolyte interfaces are reviewed.Lastly,the perspectives on the future development direction of aqueous electrolytes,zinc anodes,and Zn/electrolyte interfaces are presented. 展开更多
关键词 Aqueous zinc ions batteries Parasitic reactions Aqueous electrolyte zinc anode
下载PDF
Mechanical reliable,NIR light-induced rapid self-healing hydrogel electrolyte towards flexible zinc-ion hybrid supercapacitors with low-temperature adaptability and long service life 被引量:1
7
作者 Tengjia Gao Na Li +4 位作者 Yang Yang Jing Li Peng Ji Yunlong Zhou Jianxiong Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期63-73,共11页
Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to dras... Hydrogel electrolytes hold great potential in flexible zinc ion supercapacitors(ZICs)due to their high conductivity,good safety,and flexibility.However,freezing of electrolytes at low temperature(subzero)leads to drastic reduction in ionic conductivity and mechanical properties that deteriorates the performance of flexible ZICs.Besides,the mechanical fracture during arbitrary deformations significantly prunes out the lifespan of the flexible device.Herein,a Zn^(2+)and Li^(+)co-doped,polypyrrole-dopamine decorated Sb_(2)S_(3)incorporated,and polyvinyl alcohol/poly(N-(2-hydroxyethyl)acrylamide)double-network hydrogel electrolyte is constructed with favorable mechanical reliability,anti-freezing,and self-healing ability.In addition,it delivers ultra-high ionic conductivity of 8.6 and 3.7 S m^(-1)at 20 and−30°C,respectively,and displays excellent mechanical properties to withstand tensile stress of 1.85 MPa with tensile elongation of 760%,together with fracture energy of 5.14 MJ m^(-3).Notably,the fractured hydrogel electrolyte can recover itself after only 90 s of infrared illumination,while regaining 83%of its tensile strain and almost 100%of its ionic conductivity during−30–60°C.Moreover,ZICs coupled with this hydrogel electrolyte not only show a wide voltage window(up to 2 V),but also provide high energy density of 230 Wh kg^(-1)at power density of 500 W kg^(-1)with a capacity retention of 86.7%after 20,000 cycles under 20°C.Furthermore,the ZICs are able to retain excellent capacity even under various mechanical deformation at−30°C.This contribution will open up new insights into design of advanced wearable flexible electronics with environmental adaptability and long-life span. 展开更多
关键词 Flexible zinc ion supercapacitor Hydrogel electrolyte Self-healing Anti-freezing
下载PDF
Regulated electronic structure and improved electrocatalytic performances of S-doped FeWO4 for rechargeable zinc-air batteries
8
作者 Huan Wang Li Xu +3 位作者 Daijie Deng Xiaozhi Liu Henan Li Dong Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期359-367,I0009,共10页
The exploration of active and long-lived oxygen reduction reaction(ORR)catalysts for the commercialization of zinc-air batteries are of immense significance but challenging.Herein,the sulfur doped FeWO_(4)embedded in ... The exploration of active and long-lived oxygen reduction reaction(ORR)catalysts for the commercialization of zinc-air batteries are of immense significance but challenging.Herein,the sulfur doped FeWO_(4)embedded in the multi-dimensional nitrogen-doped carbon structure(S-FeWO_(4)/NC)was successfully synthesized.The doped S atoms optimized the charge distribution in FeWO_(4)and enhanced the intrinsic activity.At the same time,S doping accelerated the formation of reaction intermediates during the adsorption reduction of O_(2)on the surface of S-FeWO_(4)/NC.Accordingly,the S-FeWO_(4)/NC catalyst showed more positive half-wave potential(0.85 V)and better stability than that of the FeWO_(4)/NC catalyst.Furthermore,the S-FeWO_(4)/NC-based zinc-air battery exhibited considerable power density of 150.3m W cm^(-2),high specific capacity of 912.7 m A h g^(-1),and prominent cycle stability up to 220 h.This work provides an assistance to the development of cheap and efficient tungsten-based oxygen reduction catalysts and the promotion of its application in the zinc-air battery. 展开更多
关键词 S doping FeWO4 Oxygen reduction reaction zinc-air batteries
下载PDF
Engineered nitrogen doping on VO_(2)(B)enables fast and reversible zinc-ion storage capability for aqueous zinc-ion batteries
9
作者 Xin Gu Juntao Wang +7 位作者 Xiaobin Zhao Xin Jin Yuzhe Jiang Pengcheng Dai Nana Wang Zhongchao Bai Mengdi Zhang Mingbo Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期30-38,I0003,共10页
Vanadium-based compounds with high theoretical capacities and relatively stable crystal structures are potential cathodes for aqueous zinc-ion batteries(AZIBs).Nevertheless,their low electronic conductivity and sluggi... Vanadium-based compounds with high theoretical capacities and relatively stable crystal structures are potential cathodes for aqueous zinc-ion batteries(AZIBs).Nevertheless,their low electronic conductivity and sluggish zinc-ion diffusion kinetics in the crystal lattice are greatly obstructing their practical application.Herein,a general and simple nitrogen doping strategy is proposed to construct nitrogen-doped VO_(2)(B)nanobelts(denoted as VO_(2)-N)by the ammonia heat treatment.Compared with pure VO_(2)(B),VO_(2)-N shows an expanded lattice,reduced grain size,and disordered structure,which facilitates ion transport,provides additional ion storage sites,and improves structural durability,thus presenting much-enhanced zinc-ion storage performance.Density functional theory calculations demonstrate that nitrogen doping in VO_(2)(B)improves its electronic properties and reduces the zinc-ion diffusion barrier.The optimal VO_(2)-N400 electrode exhibits a high specific capacity of 373.7 mA h g^(-1)after 100 cycles at 0.1 A g^(-1)and stable cycling performance after 2000 cycles at 5 A g^(-1).The zinc-ion storage mechanism of VO_(2)-N is identified as a typical intercalation/de-intercalation process. 展开更多
关键词 Vanadium dioxide Nitrogen doping Cathode materials Aqueous zinc-ion batteries
下载PDF
High donor-number and low content electrolyte additive for stabilizing zinc metal anode
10
作者 Yuxin Gong Ruifan Lin +9 位作者 Bo Wang Huaizheng Ren Lei Wang Han Zhang Jianxin Wang Deyu Li Yueping Xiong Dianlong Wang Huakun Liu Shixue Dou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期626-635,I0014,共11页
The aqueous zinc ion batteries(AZIBs)are thought as promising competitors for electrochemical energy storage,though their wide application is curbed by the uncontrollable dendrite growth and gas evolution side reactio... The aqueous zinc ion batteries(AZIBs)are thought as promising competitors for electrochemical energy storage,though their wide application is curbed by the uncontrollable dendrite growth and gas evolution side reactions.Herein,to stabilize both zinc anodes and water molecules,we developed a modified electrolyte by adding a trace amount of N,N-diethylformanmide(DEF)into the ZnSO_(4)electrolyte for the first time in zinc ion batteries.The effectiveness of DEF is predicted by the comparison of donor number and its preferential adsorption behavior on the zinc anode is further demonstrated by several spectroscopy characterizations,electrochemical methods,and molecular dynamics simulation.The modified electrolyte with 5%v.t.DEF content can ensure a stable cycling life longer than 3400 h of Zn‖Zn symmetric cells and an ultra-reversible Zn stripping/plating process with a high coulombic efficiency of 99.7%.The Zn‖VO_(2)full cell maintains a capacity retention of 83.5%and a 104 mA h g^(-1)mass capacity after 1000cycles.This work provides insights into the role of interfacial adsorption behavior and the donor number of additive molecules in designing low-content and effective aqueous electrolytes. 展开更多
关键词 Aqueous zinc ion batteries zinc anode Electrolyte additives Donor number zinc dendrites
下载PDF
Design Strategies for Aqueous Zinc Metal Batteries with High Zinc Utilization: From Metal Anodes to Anode-Free Structures
11
作者 Xianfu Zhang Long Zhang +2 位作者 Xinyuan Jia Wen Song Yongchang Liu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期305-349,共45页
Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low re... Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented. 展开更多
关键词 Aqueous zinc metal batteries zinc anodes High zinc utilization Depth of discharge Anode-free structures
下载PDF
Lamellar-stacked cobalt-based nanopiles integrated with nitrogen/sulfur co-doped graphene as a bifunctional electrocatalyst for ultralong-term zinc-air batteries
12
作者 Lingxue Meng Wenwei Liu +6 位作者 Yang Lu Zhenyi Liang Ting He Jinying Li Haoxiong Nan Shengxu Luo Jia Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期633-641,I0014,共10页
Sluggish oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)kinetics inevitably impede the practical performance of rechargeable zinc-air batteries.Thus,combing the structural designability of transition ... Sluggish oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)kinetics inevitably impede the practical performance of rechargeable zinc-air batteries.Thus,combing the structural designability of transition metal-based electrocatalysts with anionic regulation is highly desired.Herein,mesoporous lamellar-stacked cobalt-based nanopiles with surface-sulfurization modification are elaborately designed and integrated with N/S co-doped graphene to build a robust OER/ORR bifunctional electrocatalyst.The lamellar-stacking mode of mesoporous nanosheets with abundant channels accelerates gas-liquid mass transfer,and partial-sulfurization of cobalt-based matrix surface efficiently improves the intrinsic OER activity.Meanwhile,N/S co-doped graphene further reinforces the ORR active sites while providing a stable conductive skeleton.As expected,this composite electrocatalyst delivers considerable bifunctional activity and stability,with an OER overpotential of 323 m V at 10 m A cm^(-2)and high durability.When applied in zinc-air batteries,remarkable ultralong-term stability over 4000 cycles and a maximum power density of 150.1 m W cm^(-2)are achieved.This work provides new insight into structurecomposition synergistic design of rapid-kinetics OER/ORR bifunctional electrocatalyst for nextgeneration metal-air batteries. 展开更多
关键词 Lamellar-stacking nanopile Co_(3)O_(4) Anionic regulation Oxygen evolution reaction Oxygen reduction reaction zinc–air battery
下载PDF
Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries
13
作者 Jiabing Miao Yingxiao Du +5 位作者 Ruotong Li Zekun Zhang Ningning Zhao Lei Dai Ling Wang Zhangxing He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期33-47,共15页
Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zin... Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zinc dendrites, passivation, corrosion, and hydrogen evolution reactions during the charging and discharging of batteries, becoming obstacles to the practical application of ZIBs. Appropriate zinc metal-free anodes provide a higher working potential than metallic zinc anodes, effectively solving the problems of zinc dendrites, hydrogen evolution, and side reactions during the operation of metallic zinc anodes. The improvement in the safety and cycle life of batteries creates conditions for further commercialization of ZIBs. Therefore, this work systematically introduces the research progress of zinc metal-free anodes in “rocking chair” ZIBs. Zinc metal-free anodes are mainly discussed in four categories: transition metal oxides,transition metal sulfides, MXene(two dimensional transition metal carbide) composites, and organic compounds, with discussions on their properties and zinc storage mechanisms. Finally, the outlook for the development of zinc metal-free anodes is proposed. This paper is expected to provide a reference for the further promotion of commercial rechargeable ZIBs. 展开更多
关键词 zinc ion batteries ANODE zinc metal-free anode recent advances PERSPECTIVES
下载PDF
Growth and inhibition of zinc anode dendrites in Zn-air batteries:Model and experiment
14
作者 Cuiping He Qingyi Gou +6 位作者 Yanqing Hou Jianguo Wang Xiang You Ni Yang Lin Tian Gang Xie Yuanliang Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期268-281,共14页
Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active mate... Zinc(Zn)-air batteries are widely used in secondary battery research owing to their high theoretical energy density,good electrochemical reversibility,stable discharge performance,and low cost of the anode active material Zn.However,the Zn anode also leads to many challenges,including dendrite growth,deformation,and hydrogen precipitation self-corrosion.In this context,Zn dendrite growth has a greater impact on the cycle lives.In this dissertation,a dendrite growth model for a Zn-air battery was established based on electrochemical phase field theory,and the effects of the charging time,anisotropy strength,and electrolyte temperature on the morphology and growth height of Zn dendrites were studied.A series of experiments was designed with different gradient influencing factors in subsequent experiments to verify the theoretical simulations,including elevated electrolyte temperatures,flowing electrolytes,and pulsed charging.The simulation results show that the growth of Zn dendrites is controlled mainly by diffusion and mass transfer processes,whereas the electrolyte temperature,flow rate,and interfacial energy anisotropy intensity are the main factors.The experimental results show that an optimal electrolyte temperature of 343.15 K,an optimal electrolyte flow rate of 40 ml·min^(-1),and an effective pulse charging mode. 展开更多
关键词 Zn-air battery zinc anode zinc dendrite Simulated dendrite growth Inhibit dendrite growth Phase-field model
下载PDF
Enhanced conductivity and weakened magnetism in Pb-doped Sr_(2)IrO_(4)
15
作者 岳智来 甄伟立 +4 位作者 牛瑞 焦珂珂 朱文卡 皮雳 张昌锦 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期680-685,共6页
Group IV element Pb has been selected as the dopant to dope at the Sr site of Sr_(2)IrO_(4). It is exciting to find that the single-phase crystal structure could be maintained with a high Pb doping level of up to x=0.... Group IV element Pb has been selected as the dopant to dope at the Sr site of Sr_(2)IrO_(4). It is exciting to find that the single-phase crystal structure could be maintained with a high Pb doping level of up to x=0.3 in Sr_(2-x)Pb_(x)IrO_(4). The mapping data obtained from energy-dispersive x-ray spectroscopy analyses give solid evidence that the Pb ions are uniformly distributed in the Sr_(2)IrO_(4) matrix. The incorporation of Pb leads to a moderate depression of the canted antiferromagnetic ordering state. The electrical conductivity could be greatly enhanced when the Pb doping content is higher than x=0.2.The present results give a fresh material base to explore new physics in doped Sr_(2)IrO_(4) systems. 展开更多
关键词 iridates doping CONDUCTIVITY MAGNETISM
下载PDF
Towards advanced zinc anodes by interfacial modification strategies for efficient aqueous zinc metal batteries
16
作者 Changchun Fan Weijia Meng Jiaye Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期79-110,I0003,共33页
Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,hi... Developing sustainable and clean energy sources(e.g.,solar,wind,and tide energy)is essential to achieve the goal of carbon neutrality.Due to the discontinuous and inco nsistent nature of common clean energy sources,high-performance energy storage technologies are a critical part of achieving this target.Aqueous zinc metal batteries(AZMBs)with inherent safety,low cost,and competitive performance are regarded as one of the promising candidates for grid-scale energy storage.However,zinc metal anodes(ZMAs)with irreversible problems of dendrite growth,hydrogen evolution reaction,self-corrosio n,and other side reactions have seriously hindered the development and commercialization of AZMBs.An increasing number of researchers are focusing on the stability of ZMAs,so assessing the effectiveness of existing research strategies is critical to the development of AZMBs.This review aims to provide a comprehensive overview of the fundamentals and challenges of AZMBs.Resea rch strategies for interfacial modification of ZMAs are systematically presented.The features of artificial interfacial coating and in-situ interfacial coating of ZMAs are compared and discussed in detail,as well as the effect of modified interfacial ZMA on the full-battery performance.Finally,perspectives are provided on the problems and challenges of ZMAs.This review is expected to offer a constructive reference for the further development and commercialization of AZMBs. 展开更多
关键词 Aqueous zinc metal batteries zinc metal anode Interfacial modification Artificial interfacial coating In-situ interfacial coating
下载PDF
Correction: Surface Patterning of Metal ZincElectrode with an In-Region Zincophilic Interfacefor High-Rate and Long-Cycle-Life Zinc MetalAnode
17
作者 Tian Wang Qiao Xi +8 位作者 Kai Yao Yuhang Liu Hao Fu Venkata Siva Kavarthapu Jun Kyu Lee Shaocong Tang Dina Fattakhova-Rohlfing Wei Ai Jae Su Yu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期456-457,共2页
Correction to:Nano-Micro Letters(2024)16:112 https://doi.org/10.1007/s40820-024-01327-2 In the supplementary information the following corrections have been carried out:1.Institute of Energy and Climate Research,Mater... Correction to:Nano-Micro Letters(2024)16:112 https://doi.org/10.1007/s40820-024-01327-2 In the supplementary information the following corrections have been carried out:1.Institute of Energy and Climate Research,Materials Synthesis and Processing,Forschungszentrum Jülich GmbH,52425 Jülich,Germany.Corrected:Institute of Energy and Climate Research:Materials Synthesis and Processing(IEK-1),Forschungszentrum Jülich GmbH,52425 Jülich,Germany. 展开更多
关键词 CORRECTION zinc ELECTRODE
下载PDF
Hole-Doped Nonvolatile and Electrically Controllable Magnetism in van der Waals Ferroelectric Heterostructures
18
作者 姜新新 王智宽 +5 位作者 李冲 孙雪莲 杨磊 李冬梅 崔彬 刘德胜 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第5期107-119,共13页
Electrical control of magnetism in van der Waals semiconductors is a promising step towards development of two-dimensional spintronic devices with ultralow power consumption for processing and storing information.Here... Electrical control of magnetism in van der Waals semiconductors is a promising step towards development of two-dimensional spintronic devices with ultralow power consumption for processing and storing information.Here, we propose a design for two-dimensional van der Waals heterostructures(vdWHs) that can host ferroelectricity and ferromagnetism simultaneously under hole doping. By contacting an In Se monolayer and forming an InSe/In_(2)Se_(3) vd WH, the switchable built-in electric field from the reversible out-of-plane polarization enables robust control of the band alignment. Furthermore, switching between the two ferroelectric states(P_↑ and P_↓)of hole-doped In_(2)Se_(3) with an external electric field can interchange the ON and OFF states of the nonvolatile magnetism. More interestingly, doping concentration and strain can effectively tune the magnetic moment and polarization energy. Therefore, this provides a platform for realizing multiferroics in ferroelectric heterostructures,showing great potential for use in nonvolatile memories and ferroelectric field-effect transistors. 展开更多
关键词 polarization FERROELECTRIC doping
下载PDF
Mott Gap Filling by Doping Electrons through Depositing One Sub-Monolayer Thin Film of Rb on Ca_(2)CuO_(2)Cl_(2)
19
作者 李寒 王朝晖 +3 位作者 范圣泰 李华州 杨欢 闻海虎 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第5期90-96,共7页
Understanding the doping evolution from a Mott insulator to a superconductor probably holds the key to resolve the mystery of unconventional superconductivity in copper oxides. To elucidate the evolution of the electr... Understanding the doping evolution from a Mott insulator to a superconductor probably holds the key to resolve the mystery of unconventional superconductivity in copper oxides. To elucidate the evolution of the electronic state starting from the Mott insulator, we dose the surface of the parent phase Ca_(2)CuO_(2)Cl_(2) by depositing Rb atoms, which are supposed to donate electrons to the CuO_(2) planes underneath. We successfully achieved the Rb sub-monolayer thin films in forming the square lattice. The scanning tunneling microscopy or spectroscopy measurements on the surface show that the Fermi energy is pinned within the Mott gap but close to the edge of the charge transfer band. In addition, an in-gap state appears at the bottom of the upper Hubbard band(UHB), and the Mott gap will be significantly diminished. Combined with the Cl defect and the Rb adatom/cluster results, the electron doping is likely to increase the spectra weight of the UHB for the double occupancy. Our results provide information to understand the electron doping to the parent compound of cuprates. 展开更多
关键词 doping holds Electron
下载PDF
Enhancing multifunctional photocatalysis with acetate-assisted cesium doping and unlocking the potential of Z-scheme solar water splitting
20
作者 Mengmeng Ma Jingzhen Li +6 位作者 Xiaogang Zhu Kong Liu Kaige Huang Guodong Yuan Shizhong Yue Zhijie Wang Shengchun Qu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期178-195,共18页
Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion ... Graphitic carbon nitride(g-C_(3)N_(4))has been extensively doped with alkali metals to enlarge photocatalytic output,in which cesium(Cs)doping is predicted to be the most efficient.Nevertheless,the sluggish diffusion and doping kinetics of precursors with high melting points,along with imprecise regulation,have raised the debate on whether Cs doping could make sense.For this matter,we attempt to confirm the positive effects of Cs doping on multifunctional photocatalysis by first using cesium acetate with the character of easy manipulation.The optimized Csdoped g-C_(3)N_(4)(CCN)shows a 41.6-fold increase in visible-light-driven hydrogen evolution reaction(HER)compared to pure g-C_(3)N_(4) and impressive degradation capability,especially with 77%refractory tetracycline and almost 100%rhodamine B degradedwithin an hour.The penetration ofCs+is demonstrated to be a mode of interlayer doping,and Cs–N bonds(especially with sp^(2) pyridine N in C═N–C),along with robust chemical interaction and electron exchange,are fabricated.This atomic configuration triggers the broadened spectral response,the improved charge migration,and the activated photocatalytic capacity.Furthermore,we evaluate the CCN/cadmium sulfide hybrid as a Z-scheme configuration,promoting the visible HER yield to 9.02 mmol g^(−1) h^(−1),which is the highest ever reported among all CCN systems.This work adds to the rapidly expanding field of manipulation strategies and supports further development of mediating served for photocatalysis. 展开更多
关键词 acetate-assisted cesium doping MULTIFUNCTIONAL PHOTOCATALYSIS Z-scheme
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部