期刊文献+
共找到1,168篇文章
< 1 2 59 >
每页显示 20 50 100
Polymer engineering for electrodes of aqueous zinc ion batteries
1
作者 Zhi Peng Zemin Feng +8 位作者 Xuelian Zhou Siwen Li Xuejing Yin Zekun Zhang Ningning Zhao Zhangxing He Lei Dai Ling Wang Chao Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期345-369,共25页
With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy stor... With the increasing demand for scalable and cost-effective electrochemical energy storage,aqueous zinc ion batteries(AZIBs)have a broad application prospect as an inexpensive,efficient,and naturally secure energy storage device.However,the limitations suffered by AZIBs,including volume expansion and active materials dissolution of the cathode,electrochemical corrosion,irreversible side reactions,zinc dendrites of the anode,have seriously decelerated the civilianization process of AZIBs.Currently,polymers have tremendous superiority for application in AZIBs attributed to their exceptional chemical stability,tunable structure,high energy density and outstanding mechanical properties.Considering the expanding applications of AZIBs and the superiority of polymers,this comprehensive paper meticulously reviews the benefits of utilizing polymeric applied to cathodes and anodes,respectively.To begin with,with adjustable structure as an entry point,the correlation between polymer structure and the function of energy storage as well as optimization is deeply investigated in respect to the mechanism.Then,depending on the diversity of properties and structures,the development of polymers in AZIBs is summarized,including conductive polymers,redox polymers as well as carbon composite polymers for cathode and polyvinylidene fluoride-,carbonyl-,amino-,nitrile-based polymers for anode,and a comprehensive evaluation of the shortcomings of these strategies is provided.Finally,an outlook highlights some of the challenges posed by the application of polymers and offers insights into the potential future direction of polymers in AZIBs.It is designed to provide a thorough reference for researchers and developers working on polymer for AZIBs. 展开更多
关键词 Aqueous zinc ion batteries POLYMER Multi-function Anode protection Energy storage
下载PDF
Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries
2
作者 Jiabing Miao Yingxiao Du +5 位作者 Ruotong Li Zekun Zhang Ningning Zhao Lei Dai Ling Wang Zhangxing He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期33-47,共15页
Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zin... Zinc-ion batteries(ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zinc dendrites, passivation, corrosion, and hydrogen evolution reactions during the charging and discharging of batteries, becoming obstacles to the practical application of ZIBs. Appropriate zinc metal-free anodes provide a higher working potential than metallic zinc anodes, effectively solving the problems of zinc dendrites, hydrogen evolution, and side reactions during the operation of metallic zinc anodes. The improvement in the safety and cycle life of batteries creates conditions for further commercialization of ZIBs. Therefore, this work systematically introduces the research progress of zinc metal-free anodes in “rocking chair” ZIBs. Zinc metal-free anodes are mainly discussed in four categories: transition metal oxides,transition metal sulfides, MXene(two dimensional transition metal carbide) composites, and organic compounds, with discussions on their properties and zinc storage mechanisms. Finally, the outlook for the development of zinc metal-free anodes is proposed. This paper is expected to provide a reference for the further promotion of commercial rechargeable ZIBs. 展开更多
关键词 zinc ion batteries ANODE zinc metal-free anode recent advances PERSPECTIVES
下载PDF
Novel high-voltage cathode for aqueous zinc ion batteries:Porous K_(0.5)VOPO_(4)·1.5H_(2)O with reversible solid-solution intercalation and conversion storage mechanism
3
作者 Liyu Wang Mingliang Zhao +9 位作者 Xiaoyu Zhang Menghua Wu Yu Zong Yu Chen Xinliang Huang Mingjie Xing Xin Ning Wen Wen Daming Zhu Xiaochuan Ren 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期71-78,I0003,共9页
Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for... Cathode materials that possess high output voltage,as well as those that can be mass-produced using facile techniques,are crucial for the advancement of aqueous zinc-ion battery(ZIBs)applications,Herein,we present for the first time a new porous K_(0.5)VOPO_(4)·1.5H_(2)O polyanionic cathode(P-KIVP)with high output voltage(above 1.2 V)that can be manufactured at room temperature using straightforward coprecipitation and etching techniques.The P-KVP cathode experiences anisotropic crystal plane expansion via a sequential solid-solution intercalation and phase co nversion pathway throughout the Zn^(2+)storage process,as confirmed by in-situ synchrotron X-ray diffraction and ex-situ X-ray photoelectron spectroscopy.Similar to other layered vanadium-based polyanionic materials,the P-KVP cathode experiences a progressive decline in voltage during the cycle,which is demonstrated to be caused by the irreversible conversion into amorphous VO_(x).By introducing a new electrolyte containing Zn(OTF)_(2) to a mixed triethyl phosphate and water solution,it is possible to impede this irreversible conversion and obtain a high output voltage and longer cycle life by forming a P-rich cathode electrolyte interface layer.As a proof-of-concept,the flexible fiber-shaped ZIBs based on modified electrolyte woven into a fabric watch band can power an electronic watch,highlighting the application potential of P-KVP cathode. 展开更多
关键词 Aqueous zinc ion battery CATHODE Porous material High voltage platform In-situ synchrotron X-ray diffraction
下载PDF
Status and Opportunities of Zinc Ion Hybrid Capacitors: Focus on Carbon Materials, Current Collectors, and Separators 被引量:5
4
作者 Yanyan Wang Shirong Sun +2 位作者 Xiaoliang Wu Hanfeng Liang Wenli Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期73-111,共39页
Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applic... Zinc ion hybrid capacitors(ZIHCs), which integrate the features of the high power of supercapacitors and the high energy of zinc ion batteries, are promising competitors in future electrochemical energy storage applications. Carbon-based materials are deemed the competitive candidates for cathodes of ZIHC due to their cost-effectiveness, high electronic conductivity, chemical inertness, controllable surface states, and tunable pore architectures. In recent years, great research efforts have been devoted to further improving the energy density and cycling stability of ZIHCs. Reasonable modification and optimization of carbon-based materials offer a remedy for these challenges. In this review, the structural design, and electrochemical properties of carbon-based cathode materials with different dimensions, as well as the selection of compatible, robust current collectors and separators for ZIHCs are discussed. The challenges and prospects of ZIHCs are showcased to guide the innovative development of carbon-based cathode materials and the development of novel ZIHCs. 展开更多
关键词 zinc ion hybrid capacitors Carbon materials Carbon cathode Current collectors SEPARATORS
下载PDF
Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries 被引量:4
5
作者 Qing Wen Hao Fu +8 位作者 Ru-de Cui He-Zhang Chen Rui-Han Ji Lin-Bo Tang Cheng Yan Jing Mao Ke-Hua Dai Xia-Hui Zhang Jun-Chao Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期287-303,I0009,共18页
To tackle energy crisis and achieve sustainable development, aqueous rechargeable zinc ion batteries have gained widespread attention in large-scale energy storage for their low cost, high safety, high theoretical cap... To tackle energy crisis and achieve sustainable development, aqueous rechargeable zinc ion batteries have gained widespread attention in large-scale energy storage for their low cost, high safety, high theoretical capacity, and environmental compatibility in recent years. However, zinc anode in aqueous zinc ion batteries is still facing several challenges such as dendrite growth and side reactions(e.g., hydrogen evolution), which cause poor reversibility and the failure of batteries. To address these issues, interfacial modification of Zn anodes has received great attention by tuning the interaction between the anode and the electrolyte. Herein, we present recent advances in the interfacial modification of zinc anode in this review. Besides, the challenges of reported approaches of interfacial modification are also discussed.Finally, we provide an outlook for the exploration of novel zinc anode for aqueous zinc ion batteries.We hope that this review will be helpful in designing and fabricating dendrite-free and hydrogenevolution-free Zn anodes and promoting the practical application of aqueous rechargeable zinc ion batteries. 展开更多
关键词 zinc ion batteries zinc anode Interfacial modification Functional coating
下载PDF
Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries 被引量:2
6
作者 Sinian Yang Hongxia Du +5 位作者 Yuting Li Xiangsi Wu Bensheng Xiao Zhangxing He Qiaobao Zhang Xianwen Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1531-1552,共22页
Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced elect... Aqueous zinc ion batteries(AZIBs) demonstrate tremendous competitiveness and application prospects because of their abundant resources,low cost, high safety, and environmental friendliness. Although the advanced electrochemical energy storage systems based on zinc ion batteries have been greatly developed, many severe problems associated with Zn anode impede its practical application, such as the dendrite formation,hydrogen evolution, corrosion and passivation phenomenon. To address these drawbacks, electrolytes, separators, zinc alloys, interfacial modification and structural design of Zn anode have been employed at present by scientists. Among them, the structural design for zinc anode is relatively mature, which is generally believed to enhance the electroactive surface area of zinc anode, reduce local current density, and promote the uniform distribution of zinc ions on the surface of anode. In order to explore new research directions, it is crucial to systematically summarize the structural design of anode materials. Herein, this review focuses on the challenges in Zn anode, modification strategies and the three-dimensional(3D) structure design of substrate materials for Zn anode including carbon substrate materials, metal substrate materials and other substrate materials. Finally, future directions and perspectives about the Zn anode are presented for developing high-performance AZIBs. 展开更多
关键词 zinc ion battery Structure design of substrate materials Dendrite-free 3D Zn anode
下载PDF
Manipulating Horizontal Zn Deposition with Graphene Interpenetrated Zn Hybrid Foils for Dendrite-Free Aqueous Zinc Ion Batteries 被引量:1
7
作者 Yao Li Lisha Wu +4 位作者 Cong Dong Xiao Wang Yanfeng Dong Ronghuan He Zhongshuai Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第5期398-405,共8页
Aqueous zinc ion batteries(ZIBs)with intrinsic safety have great potentials in portable devices,but suffer from limited cycling life mainly caused by serious dendrite growth and unavoidable side reactions of Zn anodes... Aqueous zinc ion batteries(ZIBs)with intrinsic safety have great potentials in portable devices,but suffer from limited cycling life mainly caused by serious dendrite growth and unavoidable side reactions of Zn anodes.Herein,graphene interpenetrated Zn(GiZn)hybrid foils are developed for dendrite-free and long-term Zn anodes for high-performance ZIBs.The GiZn anode is prepared by interfacial assembly of reduced graphene oxide(rGO)on the skeletons of zinc foams,followed by mechanical compression into hybrid foils and drying process.The presence of the rGO nanosheets in the GiZn hybrid foils provides abundant zincophilic sites to induce horizontal Zn deposition for Zn metal anodes without the growth of dendrites.Meanwhile,the uniform distribution of rGO nanosheets endows the hybrid foils with superior conductivity and wetting ability with electrolytes for reduced interfacial resistances.As a result,GiZn-based symmetric cells exhibit a small voltage hysteresis of 30.4 mV and remarkable areal capacity of 30 mAh cm^(-2)at 0.5 mA cm^(-2).Further,GiZn anodes also enable the corresponding aqueous Zn||MnO_(2)batteries with high capacity of 168.5 mAh g^(-1)at 8 C,superior to the counterpart with pure Zn foil anodes(72.7 mAh g^(-1)).Therefore,GiZn hybrid foil anodes will shed light on the rational construction of 2D material-interpenetrated Zn hybrid foil anodes for high-performance ZIBs. 展开更多
关键词 aqueous zinc ion batteries dendrite-free Zn anodes GRAPHENE high capacity long cycling life
下载PDF
Water molecules and oxygen-vacancy modulation of vanadium pentoxide with fast kinetics toward ultrahigh power density and durable flexible all-solid-state zinc ion battery
8
作者 Wenda Qiu Yunlei Tian +7 位作者 Shuting Lin Aihua Lei Zhangqi Geng Kaitao Huang Jiancong Chen Fuchun Huang Huajie Feng Xihong Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期581-591,I0014,共12页
Aqueous zinc ion battery(ZIB)with many virtues such as high safety,cost-effective,and good environmental compatibility is a large-scale energy storage technology with great application potential.Nevertheless,its appli... Aqueous zinc ion battery(ZIB)with many virtues such as high safety,cost-effective,and good environmental compatibility is a large-scale energy storage technology with great application potential.Nevertheless,its application is severely hindered by the slow diffusion of zinc ions in desirable cathode materials.Herein,a technique of water-incorporation coupled with oxygen-vacancy modulation is exploited to improve the zinc ions diffusion kinetics in vanadium pentoxide(V_(2)O_5)cathode for ZIB.The incorporated water molecules replace lattice oxygen in V_(2)O_5,and function as pillars to expand interlayer distance.So the structural stability can be enhanced,and the zinc ions diffusion kinetics might also be promoted during the repeated intercalation/deintercalation.Meanwhile,the lattice water molecules can effectively enhance conductivity due to the electronic density modulation effect.Consequently,the modulated V_(2)O_5(H-V_(2)O_5)cathode behaves with superior rate capacity and stable durability,achieving 234 mA h g^(-1)over 9000 cycles even at 20 A g^(-1).Furthermore,a flexible all-solid-state(ASS)ZIB has been constructed,exhibiting an admirable energy density of 196.6 Wh kg^(-1)and impressive power density of 20.4 kW kg^(-1)as well as excellent long-term lifespan.Importantly,the assembled flexible ASS ZIB would be able to work in a large temperature span(from-20 to 70℃).Additionally,we also uncover the energy storage mechanism of the H-V_(2)O_5 electrode,offering a novel approach for creating high-kinetics cathodes for multivalent ion storage. 展开更多
关键词 Interlayer engineering Water intercalation Vanadium pentoxide ion diffusion kinetics zinc ion battery
下载PDF
High durable aqueous zinc ion batteries by synergistic effect of V_(6)O_(13)/VO_(2) electrode materials
9
作者 Yi Liu Xiang Wu 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期334-341,I0009,共9页
Vanadium oxides have attracted one’s wide attention due to their diverse valences and spatial structure as cathode for aqueous zinc ion batteries.However,a strong electrostatic interaction exists between Zn ions and ... Vanadium oxides have attracted one’s wide attention due to their diverse valences and spatial structure as cathode for aqueous zinc ion batteries.However,a strong electrostatic interaction exists between Zn ions and host materials,which leads to their sluggish reaction kinetics and inferior structural stability.Herein,we design a kind of vanadium-based electrode materials with abundant phase boundaries and oxygen defects.The assembled Zn//V_(6)O_(13)/VO_(2) batteries deliver a specific capacity of 498.3 mA h g^(-1)at 0.2 A g^(-1) and retain a capacity of 485.8 mA h g^(-1)after 100 cycles.Moreover,they achieve a retention rate of 96.8% after 5000 cycles at 10 A g^(-1).The soft pack cells also show excellent mechanical stability at different folding conditions. 展开更多
关键词 Aqueous zinc ion batteries Vanadium oxide Cathode material Phase boundary Cycling stability
下载PDF
Designing interstitial boron-doped tunnel-type vanadium dioxide cathode for enhancing zinc ion storage capability
10
作者 Shiwen Wang Hang Zhang +7 位作者 Kang Zhao Wenqing Liu Nairui Luo Jianan Zhao Shide Wu Junwei Ding Shaoming Fang Fangyi Cheng 《Carbon Energy》 SCIE CSCD 2023年第8期78-86,共9页
Chemical doping is a powerful method to intrinsically tailor the electrochemical properties of electrode materials.Here,an interstitial boron-doped tunnel-type VO_(2)(B)is constructed via a facile hydrothermal method.... Chemical doping is a powerful method to intrinsically tailor the electrochemical properties of electrode materials.Here,an interstitial boron-doped tunnel-type VO_(2)(B)is constructed via a facile hydrothermal method.Various analysis techniques demonstrate that boron resides in the interstitial site of VO_(2)(B)and such interstitial doping can boost the zinc storage kinetics and structural stability of VO_(2)(B)cathode during cycling.Interestingly,we found that the boron doping level has a saturation limit peculiarity as proved by the quantitative analysis.Notably,the 2 at.%boron-doped VO_(2)(B)shows enhanced zinc ion storage performance with a high storage capacity of 281.7 mAh g^(-1) at 0.1 A g^(-1),excellent rate performance of 142.2 mAh g^(-1) at 20 A g^(-1),and long cycle stability up to 1000 cycles with the capacity retention of 133.3 mAh g^(-1) at 5 A g^(-1).Additionally,the successful preparation of the boron-doped tunneltype α-MnO_(2) further indicates that the interstitial boron doping approach is a general strategy,which supplies a new chance to design other types of functional electrode materials for multivalence batteries. 展开更多
关键词 CATHODE interstitial boron doping tunnel-type VO_(2)(B) zinc ion battery
下载PDF
Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries 被引量:11
11
作者 Ying Liu Xiang Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期223-237,共15页
In recent years,rechargeable aqueous zinc ion batteries(ZIBs),as emerging energy storage devices,stand out from numerous metal ion batteries.Due to the advantages of low cost,environmentally friendly characteristic an... In recent years,rechargeable aqueous zinc ion batteries(ZIBs),as emerging energy storage devices,stand out from numerous metal ion batteries.Due to the advantages of low cost,environmentally friendly characteristic and safety,ZIBs can be considered as alternatives to lithium-ion batteries(LIBs).Vanadiumbased compounds with various structures and large layer spacings are considered as suitable cathode candidates for ZIBs.In this review,the recent research advances of vanadium-based electrode materials are systematically summarized.The electrode design strategy,electrochemical performances and energy storage mechanisms are emphasized.Finally,we point out the limitation of vanadium-based materials at present and the future prospect. 展开更多
关键词 Aqueous zinc ion batteries Vanadium-base compounds Cathode materials Energy storage mechanism
下载PDF
Recent advances and perspectives on vanadium-and manganese-based cathode materials for aqueous zinc ion batteries 被引量:8
12
作者 Na Liu Bin Li +3 位作者 Zhangxing He Lei Dai Haiyan Wang Ling Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期134-159,I0004,共27页
The growing demand for energy storage has inspired researchers’exploration of advanced batteries.Aqueous zinc ion batteries(ZIBs)are promising secondary chemical battery system that can be selected and pursued.Rechar... The growing demand for energy storage has inspired researchers’exploration of advanced batteries.Aqueous zinc ion batteries(ZIBs)are promising secondary chemical battery system that can be selected and pursued.Rechargeable ZIBs possess merits of high security,low cost,environmental friendliness,and competitive performance,and they are received a lot of attention.However,the development of suitable zinc ion intercalation-type cathode materials is still a big challenge,resulting in failing to meet the commercial needs of ZIBs.Both vanadium-based and manganese-based compounds are representative of the most advanced and most widely used rechargeable ZIBs electrodes.The valence state of vanadium is+2~+5,which can realize multi-electron transfer in the redox reaction and has a high specific capacity.Most of the manganese-based compounds have tunnel structure or three-dimensional space frame,with enough space to accommodate zinc ions.In order to understand the energy storage mechanism and electrochemical performance of these two materials,a specialized review focusing on state-of-the-art developments is needed.This review offers access for researchers to keep abreast of the research progress of cathode materials for ZIBs.The latest advanced researches in vanadium-based and manganese-based cathode materials applied in aqueous ZIBs are highlighted.This article will provide useful guidance for future studies on cathode materials and aqueous ZIBs. 展开更多
关键词 zinc ion batteries Cathode Vanadium-based materials Manganese-based materials Recent advances
下载PDF
β-MnO_(2) with proton conversion mechanism in rechargeable zinc ion battery 被引量:8
13
作者 Wenbao Liu Xiaoyu Zhang +4 位作者 Yongfeng Huang Baozheng Jiang Ziwen Chang Chengjun Xu Feiyu Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期365-373,共9页
Rechargeable aqueous zinc ion battery(RAZIB)is a promising energy storage system due to its high safety,and high capacity.Among them,manganese oxides with low cost and low toxicity have drawn much attention.However,th... Rechargeable aqueous zinc ion battery(RAZIB)is a promising energy storage system due to its high safety,and high capacity.Among them,manganese oxides with low cost and low toxicity have drawn much attention.However,the under-debate proton reaction mechanism and unsatisfactory electrochemical performance limit their applications.Nanorod b-MnO_(2) synthesized by hydrothermal method is used to investigate the reaction mechanism.As cathode materials for RAZIB,the Zn//b-MnO_(2) delivers 355 mA h g^(-1)(based on cathode mass)at0.1 A g^(-1),and retain 110 mA h g^(-1) after 1000 cycles at 0.2 A g^(-1).Different from conventional zinc ion insertion/extraction mechanism,the proton conversion and Mn ion dissolution/deposition mechanism of b-MnO_(2) is proposed by analyzing the evolution of phase,structure,morphology,and element of b-MnO_(2) electrode,the pH change of electrolyte and the determination of intermediate phase MnO OH.Zinc ion,as a kind of Lewis acid,also provides protons through the formation of ZHS in the proton reaction process.This study of reaction mechanism provides a new perspective for the development of Zn//MnO_(2) battery chemistry. 展开更多
关键词 zinc ion battery Manganese dioxide Manganese ion dissolution-deposition Proton conversion
下载PDF
Cooperative Chloride Hydrogel Electrolytes Enabling Ultralow-Temperature Aqueous Zinc Ion Batteries by the Hofmeister Effect 被引量:5
14
作者 Changyuan Yan Yangyang Wang +1 位作者 Xianyu Deng Yonghang Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第6期219-233,共15页
Aqueous zinc ion batteries have high potential applicability for energy storage due to their reliable safety,environmental friendliness,and low cost.However,the freezing of aqueous electrolytes limits the normal opera... Aqueous zinc ion batteries have high potential applicability for energy storage due to their reliable safety,environmental friendliness,and low cost.However,the freezing of aqueous electrolytes limits the normal operation of batteries at low temperatures.Herein,a series of high-performance and low-cost chloride hydrogel electrolytes with high concentrations and low freezing points are developed.The electrochemical windows of the chloride hydrogel electrolytes are enlarged by>1 V under cryogenic conditions due to the obvious evolution of hydrogen bonds,which highly facilitates the operation of electrolytes at ultralow temperatures,as evidenced by the low-temperature Raman spectroscopy and linear scanning voltammetry.Based on the Hofmeister effect,the hydrogen-bond network of the cooperative chloride hydrogel electrolyte comprising 3 M ZnCl_(2)and 6 M LiCl can be strongly interrupted,thus exhibiting a sufficient ionic conductivity of 1.14 mS cm;and a low activation energy of 0.21 e V at-50℃.This superior electrolyte endows a polyaniline/Zn battery with a remarkable discharge specific capacity of 96.5 mAh g;at-50℃,while the capacity retention remains~100%after 2000 cycles.These results will broaden the basic understanding of chloride hydrogel electrolytes and provide new insights into the development of ultralow-temperature aqueous batteries. 展开更多
关键词 Chloride hydrogel Electrochemical window Cooperative effect HYDROGEN-BOND Ultralow temperature Aqueous zinc ion battery
下载PDF
Oxide-based cathode materials for rechargeable zinc ion batteries:Progresses and challenges 被引量:5
15
作者 Yingze Zhou Fandi Chen +6 位作者 Hamidreza Arandiyan Peiyuan Guan Yunjian Liu Yuan Wang Chuan Zhao Danyang Wang Dewei Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期516-542,I0013,共28页
With the increasing demands for electrical energy storage technologies,rechargeable zinc ion batteries(ZIBs)have been rapidly developed in recent years owing to their high safety,low cost and high energy storage capab... With the increasing demands for electrical energy storage technologies,rechargeable zinc ion batteries(ZIBs)have been rapidly developed in recent years owing to their high safety,low cost and high energy storage capability.The cathode is an essential part of ZIBs,which hosts zinc ions and determines the capacity,rate and cycling performance of the battery.The mainstream cathodes for ZIBs are oxidebased materials with tunnel,layer or 3 D crystal structures.In this review,we mainly focus on the latest advanced oxide-based cathode materials in ZIBs,including manganese oxides,vanadium oxides,spinel compounds,and other metal oxide based cathodes.In addition,the mechanisms of zinc storage and recent development in cathode design have been discussed in detail.Finally,current challenges and perspectives for the future research directions of oxide-based cathodes in ZIBs are presented. 展开更多
关键词 zinc ion batteries Oxide-based cathode Manganese oxides cathode Vanadium oxides cathode
下载PDF
Pyridinic nitrogen enriched porous carbon derived from bimetal organic frameworks for high capacity zinc ion hybrid capacitors with remarkable rate capability 被引量:3
16
作者 Yao Li Pengfei Lu +5 位作者 Ping Shang Lisha Wu Xiao Wang Yanfeng Dong Ronghuan He Zhong-Shuai Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期404-411,共8页
Aqueous zinc ion hybrid capacitors(ZIHCs)hold great potential for large-scale energy storage applications owing to their high safety and low cost,but suffer from low capacity and energy density.Herein,pyridinic nitrog... Aqueous zinc ion hybrid capacitors(ZIHCs)hold great potential for large-scale energy storage applications owing to their high safety and low cost,but suffer from low capacity and energy density.Herein,pyridinic nitrogen enriched porous carbon(nPC)was successfully synthesized via the growth,subsequent annealing and acid etching of bimetal organic frameworks for high capacity and safe ZIHCs with exceptional rate capability.Benefiting from the mesopores for easy ion diffusion,high electrical conductivity enabled by in-situ grown carbon nanotubes matrix and residual metal Co nanoparticles for fast electron transfer,sufficient micropores and high N content(8.9 at%)with dominated pyridinic N(54%)for enhanced zinc ion storage,the resulting nPC cathodes for ZIHCs achieved high capacities of 302 and137 m Ah g^(-1) at 1 and 18 A g^(-1),outperforming most reported carbon based cathodes.Theoretical results further disclosed that pyridinic N possessed larger binding energy of-4.99 eV to chemically coordinate with Zn2+than other N species.Moreover,quasi-solid-state ZIHCs with gelatin based gel electrolytes exhibited high energy density of 157.6 Wh kg^(-1) at 0.69 kW kg^(-1),high safety and mechanical flexibility to withstand mechanical deformation and drilling.This strategy of developing pyridinic nitrogen enriched porous carbon will pave a new avenue to construct safe ZIHCs with high energy densities. 展开更多
关键词 zinc ion hybrid capacitors Nitrogen doping Porous carbon Metal organic frameworks High capacity
下载PDF
Identifying Heteroatomic and Defective Sites in Carbon with Dual-Ion Adsorption Capability for High Energy and Power Zinc Ion Capacitor 被引量:2
17
作者 Wenjie Fan Jia Ding +7 位作者 Jingnan Ding Yulong Zheng Wanqing Song Jiangfeng Lin Caixia Xiao Cheng Zhong Huanlei Wang Wenbin Hu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第4期58-75,共18页
Aqueous zinc-based batteries(AZB s)attract tremendous attention due to the abundant and rechargeable zinc anode.Nonetheless,the requirement of high energy and power densities raises great challenge for the cathode dev... Aqueous zinc-based batteries(AZB s)attract tremendous attention due to the abundant and rechargeable zinc anode.Nonetheless,the requirement of high energy and power densities raises great challenge for the cathode development.Herein we construct an aqueous zinc ion capacitor possessing an unrivaled combination of high energy and power characteristics by employing a unique dual-ion adsorption mechanism in the cathode side.Through a templating/activating co-assisted carbonization procedure,a routine protein-rich biomass transforms into defect-rich carbon with immense surface area of 3657.5 m^(2) g^(-1) and electrochemically active heteroatom content of 8.0 at%.Comprehensive characterization and DFT calculations reveal that the obtained carbon cathode exhibits capacitive charge adsorptions toward both the cations and anions,which regularly occur at the specific sites of heteroatom moieties and lattice defects upon different depths of discharge/charge.The dual-ion adsorption mechanism endows the assembled cells with maximum capacity of 257 mAh g^(-1) and retention of72 mAh g^(-1) at ultrahigh current density of 100 A g^(-1)(400 C),corresponding to the outstanding energy and power of 168 Wh kg^(-1)and 61,700 W kg^(-1).Furthermore,practical battery configurations of solid-state pouch and cable-type cells display excellent reliability in electrochemistry as flexible and knittable power sources. 展开更多
关键词 Aqueous zinc ion capacitor Dual-ion adsorption Charge storage mechanism High energy and power Flexible and knittable devices
下载PDF
High rate and ultralong life flexible all-solid-state zinc ion battery based on electron density modulated NiCo_(2)O_(4) nanosheets 被引量:1
18
作者 Wenda Qiu Yunlei Tian +9 位作者 Zhenchao Lin Shuting Lin Zhangqi Geng Kaitao Huang Aihua Lei Fuchun Huang Huajie Feng Fengze Ding Yu Li Xihong Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期283-291,I0008,共10页
The development of zinc ion batteries (ZIBs) with large capacity,high rate,and durable cathode material is a crucial and urgent task.Ni Co_(2)O_(4)(NCO) has received ever-growing interest as a potential cathode materi... The development of zinc ion batteries (ZIBs) with large capacity,high rate,and durable cathode material is a crucial and urgent task.Ni Co_(2)O_(4)(NCO) has received ever-growing interest as a potential cathode material for ZIBs,owing to the high theoretical capacity,rich source,cost-effective,and versatile redox nature.However,due to the slow dynamics of the NCO electrodes,its practical application in highperformance systems is severely limited.Herein,we report an electron density modulated NCO nanosheets (N-NCO NSs) with high-kinetics Zn^(2+)-storage capability as an additive-free cathode for flexible all-solid-state (ASS) ZIBs.By virtue of the enhanced electronic conductivity,improved reaction kinetics,and increased active sites,the optimized N-NCO NSs electrode delivers a high capacity of 357.7 m Ah g^(-1)at 1.0 A g^(-1)and a superior rate capacity of 201.4 m Ah g^(-1)at 20 A g^(-1).More importantly,a flexible ASS ZIBs device is manufactured using a solid polymer electrolyte of a poly (vinylidene fluoride hexafluoropropylene)(PVDF-HFP) film.The flexible ASS ZIBs device shows superb durability with 80.2%capacity retention after 20,000 cycles and works well in the range of-20–70℃.Furthermore,the flexible ASS ZIBs achieves an impressive energy density as high as 578.1 W h kg^(-1)with a peak power density of 33.6 k W kg^(-1),substantially outperforming those latest ZIBs.This work could provide valuable insights for constructing high-kinetics and high-capability cathodes with long-term stability for flexible ASS ZIBs. 展开更多
关键词 Electron densities modulation NiCo_(2)O_(4)nanosheets ALL-SOLID-STATE FLEXIBLE zinc ion batteries
下载PDF
Insights into the Structure Stability of Prussian Blue for Aqueous Zinc Ion Batteries 被引量:1
19
作者 Zhuxin Li Tingting Liu +5 位作者 Ruijin Meng Lujie Gao Yiping Zou Peng Peng Yuying Shao Xiao Liang 《Energy & Environmental Materials》 SCIE CSCD 2021年第1期111-116,共6页
The reversible storage of Zn^(2+)ions in Prussian blue analogues with typical aqueous solution was challenged by fast degradation and poor coulombic efficiency,while the mechanism is yet to be uncovered.This study cor... The reversible storage of Zn^(2+)ions in Prussian blue analogues with typical aqueous solution was challenged by fast degradation and poor coulombic efficiency,while the mechanism is yet to be uncovered.This study correlates the performance of the nickel hexacyanoferrate to the dynamics of H_(2)O in the electrolyte and the associated phase stability of the electrode.It demonstrates severe Ni dissolution in conventional diluted aqueous electrolyte(1 M ZnSO^(4)or 1 M Zn(TFSI)^(2)),leading to structure collapse with the formation of an electrochemical inert phase.This is regarded as the descriptor for the fast decay of nickel hexacyanoferrate in diluted aqueous electrolyte.However,a well-preserved open framework for zinc storage was obtained in concentrated aqueous electrolyte(1 M Zn(TFSI)_(2)+21 M LiTFSI)—the H_(2)O activity is highly suppressed by extensive coordination—thus,reversible capacity of 60.2 m Ah g^(-1)over 1600 cycles could be delivered. 展开更多
关键词 aqueous battery long lifespan phase stability Prussian blue zinc ion battery
下载PDF
Phase Transformation of Amorphous Calcium Carbonate to Single-Crystalline Aragonite with Macroscopic Layered Structure in the Presence of Egg White Protein and Zinc Ion
20
作者 曾辉 XIE Jingjing +4 位作者 PING Hang WANG Menghu XIE Hao WANG Weimin 傅正义 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第1期65-70,共6页
Highly oriented calcium carbonate lamellas are exquisite structure produced by biomineralization. Strategies mimicking nature have been developed to synthesize inorganic materials with excellent structures and optimal... Highly oriented calcium carbonate lamellas are exquisite structure produced by biomineralization. Strategies mimicking nature have been developed to synthesize inorganic materials with excellent structures and optimal properties. In our strategy, egg white protein and zinc ion were employed in the solution to induce the crystallization of calcium carbonate, resulting in the macroscopic aragonite laminate with an average length of 1.5 mm, which was comprised of single-crystalline tablets. During the crystallization at initial stage, it was found that the particles displayed the characteristics of amorphous calcium carbonate, which was then transformed into the sophisticated structured aragonite through a multistage assembly process. The rebuilt nacre structure in vitro was achieved owing to the synergistic effects of egg white protein and zinc ion. 展开更多
关键词 calcium carbonate ACC ARAGONITE egg white protein zinc ion
下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部