期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
THE CORROSION OF Al CAST IRON IN Zn LIQUID BATH
1
作者 Y.H. Qi, Y.Q. Ma, Z.P. Zhang and Z.K. Hei Institute of Materials & Technology, Dalian Maritime University, Dalian 116026, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第5期940-945,共6页
When cast iron is added with Al, the compound layer formed by reaction between cast iron and liquid Zn at 500~600℃ consists of nubby δ +Fe-Al phases instead of column δ+г phases, and the width of the compound lay... When cast iron is added with Al, the compound layer formed by reaction between cast iron and liquid Zn at 500~600℃ consists of nubby δ +Fe-Al phases instead of column δ+г phases, and the width of the compound layer increases obviously. The consumption of Fe in cast iron is dominated by the diffusive rate of Fe through the compound layer, therefore, the corrosive rate of cast iron is decreased remarkably. With increasing the content of Al in cast iron, the corrosive rate of the cast iron further decrease. For the cast iron containing 8.1 wt.% Al, its corrosive rate is ten times as low as that of general gray cast iron. 展开更多
关键词 Al cast iron corrosion in zn bath Fe-Al phases
下载PDF
STUDY ON FRACTOGRAPHY OF TRANSGRANULAR SCC OF 70Cu-3OZn IN AN AMMONIACAL SOLUTION
2
作者 S.Q.Li J.I.Dickson J.P.Bailon 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1998年第5期347-357,共11页
The microfractography of transgranular stress corrosion cracking (TSCC) of 70Cu-30Zn a-brass in ammoniacal solution was studied. The observations indicate that on a very microscale, the crack path of TSCC of or-brass ... The microfractography of transgranular stress corrosion cracking (TSCC) of 70Cu-30Zn a-brass in ammoniacal solution was studied. The observations indicate that on a very microscale, the crack path of TSCC of or-brass follows {111} planes. The crack path very often alternates between {111} Planes to result in 'cleavage-like'facet, the usual average orientation of which is {110} with preferential microscopic crack propagation in (100) and (112) directions. The average orientation of wide secondary facets is often close to {100}. The size of {111} microfacets increases with incrmsing stress intensity K, which indicates that the microscopic crack path follows {111} planes on which some localized slip has occurred. Possible TSCC mechanisms which appear to be consistent with the microfraphic features observed in the present study are also discussed. 展开更多
关键词 FRACTOGRAPHY transgranular stress corrosion cracking (TSCC) 70Cu-30zn a-brass face-centered cubic (FCC) metal
下载PDF
Cyclohexanedodecol-Assisted Interfacial Engineering for Robust and High-Performance Zinc Metal Anode 被引量:1
3
作者 Zhenzhen Wu Meng Li +8 位作者 Yuhui Tian Hao Chen Shao-Jian Zhang Chuang Sun Chengpeng Li Milton Kiefel Chao Lai Zhan Lin Shanqing Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第7期55-71,共17页
Aqueous zinc-ion batteries(AZIBs)can be one of the most promising electrochemical energy storage devices for being non-flammable,low-cost,and sustainable.However,the challenges of AZIBs,including dendrite growth,hydro... Aqueous zinc-ion batteries(AZIBs)can be one of the most promising electrochemical energy storage devices for being non-flammable,low-cost,and sustainable.However,the challenges of AZIBs,including dendrite growth,hydrogen evolution,corrosion,and passivation of zinc anode during charging and discharging processes,must be overcome to achieve high cycling performance and stability in practical applications.In this work,we utilize a dual-func-tional organic additive cyclohexanedodecol(CHD)to firstly establish[Zn(H2O)5(CHD)]2+complex ion in an aqueous Zn electrolyte and secondly build a robust protection layer on the Zn surface to overcome these dilemmas.Systematic experiments and theoretical calculations are carried out to interpret the working mechanism of CHD.At a very low concentration of 0.1 mg mL^(−1) CHD,long-term reversible Zn plating/stripping could be achieved up to 2200 h at 2 mA cm^(−2),1000 h at 5 mA cm^(−2),and 650 h at 10 mA cm^(−2) at the fixed capacity of 1 mAh cm^(−2).When matched with V_(2)O_(5) cathode,the resultant AZIBs full cell with the CHD-modified electrolyte presents a high capacity of 175 mAh g^(−1) with the capacity retention of 92%after 2000 cycles under 2 A g^(−1).Such a performance could enable the commercialization of AZIBs for applications in grid energy storage and industrial energy storage. 展开更多
关键词 Cyclohexanedodecol Aqueous zn-ion battery zn dendrite zn corrosion Hydrogen evolution
下载PDF
Microstructure,Mechanical Properties and Corrosion Behavior of Extruded Mg–Zn–Ag Alloys with Single-Phase Structure 被引量:1
4
作者 Hong Zhao Li-Qing Wang +3 位作者 Yu-Ping Ren Bo Yang Song Li Gao-Wu Qin 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第6期575-583,共9页
Mg–Zn–Ag alloys have been extensively studied in recent years for potential biodegradable implants due to their unique mechanical properties,biodegradability and biocompatibility.In the present study,Mg–3Zn-x Ag(w... Mg–Zn–Ag alloys have been extensively studied in recent years for potential biodegradable implants due to their unique mechanical properties,biodegradability and biocompatibility.In the present study,Mg–3Zn-x Ag(wt%,x=0.2,0.5 and0.8)alloys with single-phase crystal structure were prepared by backward extrusion at 340°C.The addition of Ag element into Mg–3Zn slightly influences the ultimate tensile strength and microstructure,but the elongation firstly increases from12%to 19.8%and then decreases from 19.8%to 9.9%with the increment of Ag concentration.The tensile yield strength,ultimate tensile strength and elongation of Mg–3Zn–0.2Ag alloy reach up to 142,234 MPa and 19.8%,respectively,which are the best mechanical performance of Mg–Zn–Ag alloys in the present work.The extruded Mg–3Zn–0.2Ag alloy also possesses the best corrosion behavior with the corresponding corrosion rate of 3.2 mm/year in immersion test,which could be explained by the single-phase and uniformly distributed grain structure,and the fewer twinning. 展开更多
关键词 Mg–zn–Ag Single phase Backward extrusion Mechanical performance corrosion behavior
原文传递
In Vitro Evaluation of the Feasibility of Commercial Zn Alloys as Biodegradable Metals 被引量:24
5
作者 C.Wang H.T.Yang +1 位作者 X.Li Y.F.Zheng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第9期909-918,共10页
In this work, three widely used commercial Zn alloys (ZA4-1, ZA4-3, ZA6-1 ) were purchased and pre- pared by hot extrusion at 200℃. The microstructure, mechanical properties, corrosion behaviors, biocompatibility a... In this work, three widely used commercial Zn alloys (ZA4-1, ZA4-3, ZA6-1 ) were purchased and pre- pared by hot extrusion at 200℃. The microstructure, mechanical properties, corrosion behaviors, biocompatibility and hemocompatibility of Zn alloys were studied with pure Zn as control, Commercial Zn alloys demonstrated increased strength and superb elongation compared with pure Zn. Accelerated corrosion rates and uniform corrosion morphologies were observed in terms of commercial Zn alloys due to galvanic effects between Zn matrix and α-Al phases. 100% extracts of ZA4-1 and ZA6-1 alloys showed mild cytotoxicity while 50% extracts of all samples displayed good biocompatibility. Retardant cell cycle and inhibited stress fibers expression were observed induced by high concentration of Zn^2+ releasing during corrosion. The hemolysis ratios of Zn alloys were lower than 1% while the adhered platelets showed slightly activated morphologies. In general, commercial Zn alloys possess promising mechanical properties, appropriate corrosion rates, significantly improved biocompatibility and good hemocompatibility in comparison to pure Zn. It is feasible to develop biodegradable metals based on commercial Zn alloys. 展开更多
关键词 Commercial zn alloys Biodegradable metals Mechanical properties corrosion behaviors Cytotoxicity Hemocompatibility
原文传递
Processing of a Novel Zn Alloy Micro-Tube for Biodegradable Vascular Stent Application 被引量:6
6
作者 Chang Wang Zhentao Yu +4 位作者 Yajun Cui Yafeng Zhang Sen Yu Gongqi Qu Haibo Gong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第9期925-929,共5页
In recent years, zinc based alloys as a new biodegradable metal material aroused intensive interests. However, the processing of Zn alloys micro-tubes (named slender-diameter and thin-walled tubes) is very difficult... In recent years, zinc based alloys as a new biodegradable metal material aroused intensive interests. However, the processing of Zn alloys micro-tubes (named slender-diameter and thin-walled tubes) is very difficult due to their HCP crystal structure and unfavorable mechanical properties. This study aimed to develop a novel technique to produce micro-tube of Zn alloy with good performance for biodegrad- able vascular stent application. In the present work, a processing method that combined drilling, cold rolling and optimized drawing was proposed to produce the novel Zn-5Mg-1Fe (wt%) alloy micro- tubes. The micro-tube with outer diameter of 2.5 mm and thickness of 130 μm was fabricated by this method and its dimension errors are within 10 μm. The micro-tube exhibits a fine and homogeneous microstructure, and the ultimate tensile strength and ductility are more than 220 MPa and 20% respectively. In addition, the micro-tube and stents of Zn alloy exhibit superior in vitro corrosion and expansion performance. It could be concluded that the novel Zn alloy micro-tube fabricated by above method might be a promising candidate material for biodegradable stent. 展开更多
关键词 zn alloy Micro-tube Biodegradable stent Mechanical properties Dimensional accuracy In vitro corrosion performance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部