The hydrogen evolution reaction (HER) and dendrite growth associated with Zn anode have become the main bottlenecks for the further development of zinc ion batteries (ZIBs).In this work,the electrochemical activity of...The hydrogen evolution reaction (HER) and dendrite growth associated with Zn anode have become the main bottlenecks for the further development of zinc ion batteries (ZIBs).In this work,the electrochemical activity of H_(3)O^(+) is inhibited by the supramolecular host–guest complex composed of H_(3)O^(+) as guest and 18-crown-6 as host.The even Zn plating is induced by the host–guest complex electrostatic shielding layer on Zn anode,as detected by in-situ optical microscopy.The lamellar Zn is plated which profits from the improved Zn plating behavior.Density functional theory (DFT) calculation presents the stable structure of complex.The less produced H_(2) content is monitored online by a mass spectrometer during Zn plating/stripping,which indicates HER can be hampered by the host–guest behavior.Thus,the ZIBs with long life and high Coulombic efficiency are achieved via introducing 18-crown-6.The proposed host–guest supramolecular interaction is expected to facilitate the furthermore development of Zn batteries.展开更多
Aqueous Zn-iodine(Zn-I_(2))batteries have attracted extensive research interest as an emerging redox conversion energy storage system due to the low cost and high safety.However,the shuttling effects of polyiodides ar...Aqueous Zn-iodine(Zn-I_(2))batteries have attracted extensive research interest as an emerging redox conversion energy storage system due to the low cost and high safety.However,the shuttling effects of polyiodides arising from incomplete redox conversion and inhomogeneous Zn plating on the Zn anode surface always hinder the commercial application of Zn-I_(2)batteries.In this work,a two-birds-with-one-stone strategy is reported for long-life Zn-I_(2)batteries.Based on the strategy,the sulfonate-functionalized carbon fiber not only acts as the excellent iodine limiter to inhibit iodine species shuttling,but also as the uniform Zn plating guidance layer on the Zn anode surface to prevent the inhomogeneous deposition of Zn^(2+).Consequently,a superior cycling stability(a capacity of 124 mAh g^(-1)after 10,000 cycles at 5 A g^(-1))is achieved.Theoretical calculations illustrate that sulfonate groups successfully induce charge redistribution on the carbon substrate,thereby strengthening the electronic interactions of the iodine species with the carbon substrate.The charge-enriched sulfonate groups can guide the uniform deposition of Zn^(2+)through a strong Coulombic effect with Zn^(2+).This work gives a new perspective on the integrated design of cathodes and anodes for rechargeable batteries.展开更多
Trauma kills more than four million people worldwide each year,with chest trauma accounting for 25%of these deaths.Rib fractures are the main manifestation of chest trauma.Biodegradable Zn alloys offer a new option to...Trauma kills more than four million people worldwide each year,with chest trauma accounting for 25%of these deaths.Rib fractures are the main manifestation of chest trauma.Biodegradable Zn alloys offer a new option to overcome clinical problems caused by permanent rib fracture internal fixation mate-rials,e.g.,long-term stress masking and secondary surgery.In this study,the fabrication procedure of biodegradable Zn-0.5Li alloy rib plates is successfully developed,which consists of casting,hot-warm rolling,cutting,and pressing sequentially.Biomechanical three-point bending performance of the Zn al-loy rib plates is comparable to that of commercial pure Ti rib plates,much higher than that of pure Zn rib plates.In addition,the Zn alloy exhibits the best antibacterial ability against E.coli and S.aureus among the three materials.Although the Zn alloy exhibits a weaker MC3T3 cytocompatibility than pure Ti,it is better than pure Zn.This study provides a foundation for the future development of various biodegrad-able Zn alloy rib plates.展开更多
基金the partial financial support from the National Natural Science Foundation of China (22075171)。
文摘The hydrogen evolution reaction (HER) and dendrite growth associated with Zn anode have become the main bottlenecks for the further development of zinc ion batteries (ZIBs).In this work,the electrochemical activity of H_(3)O^(+) is inhibited by the supramolecular host–guest complex composed of H_(3)O^(+) as guest and 18-crown-6 as host.The even Zn plating is induced by the host–guest complex electrostatic shielding layer on Zn anode,as detected by in-situ optical microscopy.The lamellar Zn is plated which profits from the improved Zn plating behavior.Density functional theory (DFT) calculation presents the stable structure of complex.The less produced H_(2) content is monitored online by a mass spectrometer during Zn plating/stripping,which indicates HER can be hampered by the host–guest behavior.Thus,the ZIBs with long life and high Coulombic efficiency are achieved via introducing 18-crown-6.The proposed host–guest supramolecular interaction is expected to facilitate the furthermore development of Zn batteries.
基金supported by the National Natural Science Foundation of China(51772082 and 51804106)the Natural Science Foundation of Hunan Province(2023JJ10005)the Science and Technology Projects of the State Grid Corporation of China(5500-202323102A-11-ZN)。
文摘Aqueous Zn-iodine(Zn-I_(2))batteries have attracted extensive research interest as an emerging redox conversion energy storage system due to the low cost and high safety.However,the shuttling effects of polyiodides arising from incomplete redox conversion and inhomogeneous Zn plating on the Zn anode surface always hinder the commercial application of Zn-I_(2)batteries.In this work,a two-birds-with-one-stone strategy is reported for long-life Zn-I_(2)batteries.Based on the strategy,the sulfonate-functionalized carbon fiber not only acts as the excellent iodine limiter to inhibit iodine species shuttling,but also as the uniform Zn plating guidance layer on the Zn anode surface to prevent the inhomogeneous deposition of Zn^(2+).Consequently,a superior cycling stability(a capacity of 124 mAh g^(-1)after 10,000 cycles at 5 A g^(-1))is achieved.Theoretical calculations illustrate that sulfonate groups successfully induce charge redistribution on the carbon substrate,thereby strengthening the electronic interactions of the iodine species with the carbon substrate.The charge-enriched sulfonate groups can guide the uniform deposition of Zn^(2+)through a strong Coulombic effect with Zn^(2+).This work gives a new perspective on the integrated design of cathodes and anodes for rechargeable batteries.
基金financially supported by the National Natural Science Foundation of China(Nos.51871020,52071028,81700799,and 82070926).
文摘Trauma kills more than four million people worldwide each year,with chest trauma accounting for 25%of these deaths.Rib fractures are the main manifestation of chest trauma.Biodegradable Zn alloys offer a new option to overcome clinical problems caused by permanent rib fracture internal fixation mate-rials,e.g.,long-term stress masking and secondary surgery.In this study,the fabrication procedure of biodegradable Zn-0.5Li alloy rib plates is successfully developed,which consists of casting,hot-warm rolling,cutting,and pressing sequentially.Biomechanical three-point bending performance of the Zn al-loy rib plates is comparable to that of commercial pure Ti rib plates,much higher than that of pure Zn rib plates.In addition,the Zn alloy exhibits the best antibacterial ability against E.coli and S.aureus among the three materials.Although the Zn alloy exhibits a weaker MC3T3 cytocompatibility than pure Ti,it is better than pure Zn.This study provides a foundation for the future development of various biodegrad-able Zn alloy rib plates.