Platinum(Pt)supported on Zinc(Zn)modified silicalite-1(S-1)zeolite(denoted as Pt-Zn/S-1)was prepared by using a wetness-impregnation method and applied in the n-hexane aromatization reaction for the first time.Both Le...Platinum(Pt)supported on Zinc(Zn)modified silicalite-1(S-1)zeolite(denoted as Pt-Zn/S-1)was prepared by using a wetness-impregnation method and applied in the n-hexane aromatization reaction for the first time.Both Lewis and Bronsted acid sites were detected in Pt-Zn/S-1 catalyst by means of FT-IR adsorption of NH3 experiment,which were identified as mostly weak and medium ones.Besides,Pt and Zn species showed strong interaction,as revealed by the TPR(Temperature-programmed reduction)and XPS(X-ray photoelectron spectroscopy)experiments.Pt-Zn/S-1 catalyst exhibited excellent aromatization function rather than isomerization and cracking side reactions in the conversion of n-hexane.Pulse experimental study showed that 75.6%of n-hexane conversion and 76.8%of benzene selectivity were obtained over Pt0.1-Zn60/S-l catalyst at 550℃ and under atmospheric pressure.By spectroscopy tests and pulse experimental results,it was concluded that the n-hexane aromatization over Pt-Zn/S-1 catalyst follows a metal-acid bifunctional mechanism.Furthermore,with the assistance of Zn,the electron-deficient Pt species in Pt-Zn/S-1 showed good sulfur tolerance performance.展开更多
This study deals with the synthesis and characterization of low-silica zeolite X, from calcined Kalabsha kaolin, for adsorption of Zn(Ⅱ) ions from aqueous solution. The synthesis processes is performed under hydrothe...This study deals with the synthesis and characterization of low-silica zeolite X, from calcined Kalabsha kaolin, for adsorption of Zn(Ⅱ) ions from aqueous solution. The synthesis processes is performed under hydrother-mal treatment in alkaline solutions. The obtained zeolite samples are characterized using X-ray diffraction, grain size distribution, surface area, and SEM. The critical molar ratios of both SiO2/Al2O3 and K2O/Na2O are about 2.9 and 0.16, respectively. Those ratios are needed to give individual low silica zeolite X in a minimum reaction time. The adsorption capacity of the synthesized products is determined by adsorption of Zn(Ⅱ) ions from solution. The results suggest that the zeolite obtained could be converted to a beneficial product, which will be used in future as an ion exchanger in removing heavy metals from wastewaters.展开更多
An Hβ-supported heteropoly acid (H3PW12O40 (HPW)/Hβ) catalyst was successfully prepared by wetness impregnation, and investigated in the alkylation of toluene with tert-butyl alcohol for the synthesis of 4-tert-...An Hβ-supported heteropoly acid (H3PW12O40 (HPW)/Hβ) catalyst was successfully prepared by wetness impregnation, and investigated in the alkylation of toluene with tert-butyl alcohol for the synthesis of 4-tert-butyltoluene (PTBT). X-ray diffraction, scanning electron microscopy, transmis- sion electron microscopy, fourier-transform infrared spectroscopy, inductively coupled plas- ma-optical emission spectrometry, the brunauer emmett teller (BET) method, tempera- ture-programmed NH3 desorption, and pyridine adsorption infrared spectroscopy were used to characterize the catalyst. The results showed that loading HPW on Hβ effectively increased the B acidity and decreased the pore size of Hβ. The B acidity of HPW/Hβ was 142.97 μmol/g, which is 69.74% higher than that of Hβ (84.23 μmol/g). The catalytic activity of the HPW/Hβ catalyst was much better than that of the parent Hβ zeolite because of its high B acidity. The toluene conversion over HPW/Hβ reached 73.1%, which is much higher than that achieved with Hβ (54.0%). When HPW was loaded on Hβ, the BET surface area of Hβ decreased from 492.5 to 379.6 m2/g, accompa- nied by a significant decrease in the pore size from 3.90 to 3.17 nm. Shape selectivity can therefore play an important role and increase the product selectivity of the HPW/Hβ catalyst compared with that of the parent Hβ. PTBT (kinetic diameter 0.58 nm) can easily diffuse through the narrowed pores of HPW/Hβ, but 3-tert-butyltoluene (kinetic diameter 0.65 nm) diffusion is restricted because of steric hindrance in these narrow pores. This results in high PTBT selectivity over HPW/Hβ (around 81%). The HPW/Hβ catalyst gave a stable catalytic performance in reusability tests.展开更多
H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framewor...H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framework,the catalytic roles of the acid sites in different pore channels of the H‐ZSM‐5 zeolite are not well understood.In this study,the MTO reaction network,involving the aromatic cycle,alkene cycle,and aromatization process,and also the diffusion behavior of methanol feedstock and olefin and aromatic products at different acid sites in the straight channel,sinusoidal channel,and intersection cavity of H‐ZSM‐5 zeolite was comparatively investigated using density functional theory calculations and molecular dynamic simulations.The results indicated that the aromatic cycle and aromatization process occurred preferentially at the acid sites in the intersection cavities with a much lower energy barrier than that at the acid sites in the straight and sinusoidal channels.In contrast,the formation of polymethylbenzenes was significantly suppressed at the acid sites in the sinusoidal and straight channels,whereas the alkene cycle can occur at all three types of acid sites with similar energy barriers and probabilities.Consequently,the catalytic performance of H‐ZSM‐5 zeolite for MTO conversion,including activity and product selectivity,can be regulated properly through the purposive alteration of the acid site distribution,viz.,the location of Al in the zeolite framework.This study helps to elucidate the relation between the catalytic performance of different acid sites in the H‐ZSM‐5 zeolite framework for MTO conversion,which should greatly benefit the design of efficient catalyst for methanol conversion.展开更多
A highly efficient synthesis of 2-amino-N-substituted-benzamides was performed by the condensation ofisatoic anhydride with several amines in solvent-free conditions under microwave irradiation. H-Y-zeolites induced h...A highly efficient synthesis of 2-amino-N-substituted-benzamides was performed by the condensation ofisatoic anhydride with several amines in solvent-free conditions under microwave irradiation. H-Y-zeolites induced heterocyclization of these products with ortho-esters under similar conditions afforded the relevant substituted-quinazolin-4(3H)ones in high yields.展开更多
The most prestigious catalyst applied in natural gas (methane) non-oxidative conversion to petrochemicals is 6%Mo/H-ZSM-5. Chromium, molybdenum and tungsten are the group VI metals. Hence, in this work, 6%Mo/H-ZSM-5...The most prestigious catalyst applied in natural gas (methane) non-oxidative conversion to petrochemicals is 6%Mo/H-ZSM-5. Chromium, molybdenum and tungsten are the group VI metals. Hence, in this work, 6%Mo/H-ZSM-5 was correlated with 3%Cr+3%Mo/H-ZSM-5 and 3%W+3%Mo/H-ZSM-5 as catalysts to examine their promoting or inhibiting effects on the various reactions taking place during methane conversion. The catalytic activities of these catalysts were tested in a continuous flow fixed bed reactor at 700℃ and a GHSV of 1500 ml·g^-1·h^-1 Characterization of the catalysts using XRD, TGA and TPD were investigated. XRD and NH3-TPD showed greater interaction between the W-phase and the Bronsted acid sites in the channels of the zeolite than between Cr-phase and the acid sites in the zeolite.展开更多
H-type zeolites( HY, Hβ, and HM) were synthesized and characterized by XRD, NH3-TPD, and Py-IR. Selectively catalytic alkylation of naphthalene with n-hexanol to hexyl-naphthalene over the zeolites was carried out....H-type zeolites( HY, Hβ, and HM) were synthesized and characterized by XRD, NH3-TPD, and Py-IR. Selectively catalytic alkylation of naphthalene with n-hexanol to hexyl-naphthalene over the zeolites was carried out. The experimental results show that the catalytic activities of the zeolites are mainly determined by their acid properties and pore structures. The larger the pore diameter is, the higher the catalytic activity is. NH3-TPD profiles show that Hβ and HM have lower acid strengths than HY. HY has both the highest activity and highest selectivity for the hexylnaphthalene. Higher reaction temperatures and longer reaction time are beneficial to the production of β-hexyl-naphthalene over the HY zeolite.展开更多
Binary gas mixture adsorption equilibrium data for the ethylene-carbon dioxide system were obtained for cation exchanged forms of ZSM5 (Li^+, Na^+, K^+, Rb^+, Mg^(+2), Ca^(+2), Sr^(+2), and Ba^(+2)) for the gas phase ...Binary gas mixture adsorption equilibrium data for the ethylene-carbon dioxide system were obtained for cation exchanged forms of ZSM5 (Li^+, Na^+, K^+, Rb^+, Mg^(+2), Ca^(+2), Sr^(+2), and Ba^(+2)) for the gas phase CO_2 mole fracion of 0.766 at 308K and 101. 3kPa. The experimental adsorption phase diagrams were obtained for CO_2-C_2H_4 on NaZSM5 and MgZSM5. Single component adsorption isotherms for CO_2 and C_2H_4 were also obtained for these two zeolites. The single component data were used to obtain parameters derived in the vacancy solution model (VSM) and the statistical thermodynamic model(STM). These parameters were, in turn, used to predict binary mixture isotherms for these two zeolites. The agreement between experimental data and predicted value is generally good.展开更多
The present paper covers an X-ray photoelectron spectroscopic (XPS) method proposed for identifying Bronsted and Lewis acidic sites in zeolites and estimating acidic strength of these sites. It was found that the adso...The present paper covers an X-ray photoelectron spectroscopic (XPS) method proposed for identifying Bronsted and Lewis acidic sites in zeolites and estimating acidic strength of these sites. It was found that the adsorption of pyridine on different acidic sites of H[M]-ZSM-5 zeolites exhibited three peaks: A (402.20-401.30 eV), B (400.95-400.40 eV) and C (399. 40-399. 10 eV). The peaks A and B are assigned to the N(?) level of pyridine adsorbed on Bronsted and Lewis acidic sites, and peak C is assigned to the N(?) level of pyridine adsorbed on a weak Lewis site and/or strongly physisorbed pyridine, respectively. The comparison of the ratio of the Bronsted and Lewis acidic sites determined from the relative intensities of the N(?), peaks with IR spectroscopic data shows that there is an inhomoge-neous distribution of Bronsted and Lewis acidic sites in H[M]-ZSM-5 zeolites. The N(?), binding energies of pyridine adsorbed on these zeolites directly reflect acidic strength, and these results are in good agreement with those observed in NH3-TPD experiments.展开更多
The ruthenium hydrido-carbonyl cluster in NaY zeolite,synthesized by the reaction of Ru3(CO)(12)/NaY with hydrogen,was characterized by FTIR,UV-VIS and EXAFS spectroscopies.
he effects of reaction temperature , flow rate of carrier gas , space velocity andbenzene to propene ratio on the alkylation of benzene with propene over Hβ zeolitewere investigated. At lower flow rate of carrier gas...he effects of reaction temperature , flow rate of carrier gas , space velocity andbenzene to propene ratio on the alkylation of benzene with propene over Hβ zeolitewere investigated. At lower flow rate of carrier gas and space velocity, higher ben-zene to propene ratio the formation of cumene is favoured due to the difference be-tween rates of reactions of the alkylation of benzene (or cumene) with propene andthe alkyltranslation of diisopropylbenzene with benzene. The propylbenzene is pro-duced directly by the alkylation of benzene with propene.展开更多
A new zinc hydrogen phosphite C4H8N2H4·Zn(HPO3)2 was prepared by hydrothermal method in the presence of piperazine as a structure-directing agent and the crystal structure was determined by single-crystal X-ray...A new zinc hydrogen phosphite C4H8N2H4·Zn(HPO3)2 was prepared by hydrothermal method in the presence of piperazine as a structure-directing agent and the crystal structure was determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, IR, ICP, elemental analysis and TG analysis. This compound has one-dimensional anionic chains containing four-membered rings built from corner-sharing linked alternating ZnO4 tetrahedra and HPO3 pseudo pyramids. The zinc hydrogen phosphite chains are interacted with the templates of diprotonated piperazine by N—H…O hydrogen bond. Crystal data for C4H8N2H4·Zn(HPO3)2∶monoclinic, space group C2/c. a=1.774 8(2) nm, b=0.724 28(9) nm, c=0.880 87(11) nm, β= 105.345(3)°, V=1.091 9(2) nm 3, Z=4, Dc=1^907 Mg/m 3, R1=0.022 9, wR2=0.058 8.展开更多
基金financially supported by the National Natural Science Foundation of China (21603023)
文摘Platinum(Pt)supported on Zinc(Zn)modified silicalite-1(S-1)zeolite(denoted as Pt-Zn/S-1)was prepared by using a wetness-impregnation method and applied in the n-hexane aromatization reaction for the first time.Both Lewis and Bronsted acid sites were detected in Pt-Zn/S-1 catalyst by means of FT-IR adsorption of NH3 experiment,which were identified as mostly weak and medium ones.Besides,Pt and Zn species showed strong interaction,as revealed by the TPR(Temperature-programmed reduction)and XPS(X-ray photoelectron spectroscopy)experiments.Pt-Zn/S-1 catalyst exhibited excellent aromatization function rather than isomerization and cracking side reactions in the conversion of n-hexane.Pulse experimental study showed that 75.6%of n-hexane conversion and 76.8%of benzene selectivity were obtained over Pt0.1-Zn60/S-l catalyst at 550℃ and under atmospheric pressure.By spectroscopy tests and pulse experimental results,it was concluded that the n-hexane aromatization over Pt-Zn/S-1 catalyst follows a metal-acid bifunctional mechanism.Furthermore,with the assistance of Zn,the electron-deficient Pt species in Pt-Zn/S-1 showed good sulfur tolerance performance.
文摘This study deals with the synthesis and characterization of low-silica zeolite X, from calcined Kalabsha kaolin, for adsorption of Zn(Ⅱ) ions from aqueous solution. The synthesis processes is performed under hydrother-mal treatment in alkaline solutions. The obtained zeolite samples are characterized using X-ray diffraction, grain size distribution, surface area, and SEM. The critical molar ratios of both SiO2/Al2O3 and K2O/Na2O are about 2.9 and 0.16, respectively. Those ratios are needed to give individual low silica zeolite X in a minimum reaction time. The adsorption capacity of the synthesized products is determined by adsorption of Zn(Ⅱ) ions from solution. The results suggest that the zeolite obtained could be converted to a beneficial product, which will be used in future as an ion exchanger in removing heavy metals from wastewaters.
文摘An Hβ-supported heteropoly acid (H3PW12O40 (HPW)/Hβ) catalyst was successfully prepared by wetness impregnation, and investigated in the alkylation of toluene with tert-butyl alcohol for the synthesis of 4-tert-butyltoluene (PTBT). X-ray diffraction, scanning electron microscopy, transmis- sion electron microscopy, fourier-transform infrared spectroscopy, inductively coupled plas- ma-optical emission spectrometry, the brunauer emmett teller (BET) method, tempera- ture-programmed NH3 desorption, and pyridine adsorption infrared spectroscopy were used to characterize the catalyst. The results showed that loading HPW on Hβ effectively increased the B acidity and decreased the pore size of Hβ. The B acidity of HPW/Hβ was 142.97 μmol/g, which is 69.74% higher than that of Hβ (84.23 μmol/g). The catalytic activity of the HPW/Hβ catalyst was much better than that of the parent Hβ zeolite because of its high B acidity. The toluene conversion over HPW/Hβ reached 73.1%, which is much higher than that achieved with Hβ (54.0%). When HPW was loaded on Hβ, the BET surface area of Hβ decreased from 492.5 to 379.6 m2/g, accompa- nied by a significant decrease in the pore size from 3.90 to 3.17 nm. Shape selectivity can therefore play an important role and increase the product selectivity of the HPW/Hβ catalyst compared with that of the parent Hβ. PTBT (kinetic diameter 0.58 nm) can easily diffuse through the narrowed pores of HPW/Hβ, but 3-tert-butyltoluene (kinetic diameter 0.65 nm) diffusion is restricted because of steric hindrance in these narrow pores. This results in high PTBT selectivity over HPW/Hβ (around 81%). The HPW/Hβ catalyst gave a stable catalytic performance in reusability tests.
文摘H‐ZSM‐5 zeolite is a typical catalyst for methanol‐to‐olefins(MTO)conversion.Although the performance of zeolite catalysts for MTO conversion is related to the actual location of acid sites in the zeolite framework,the catalytic roles of the acid sites in different pore channels of the H‐ZSM‐5 zeolite are not well understood.In this study,the MTO reaction network,involving the aromatic cycle,alkene cycle,and aromatization process,and also the diffusion behavior of methanol feedstock and olefin and aromatic products at different acid sites in the straight channel,sinusoidal channel,and intersection cavity of H‐ZSM‐5 zeolite was comparatively investigated using density functional theory calculations and molecular dynamic simulations.The results indicated that the aromatic cycle and aromatization process occurred preferentially at the acid sites in the intersection cavities with a much lower energy barrier than that at the acid sites in the straight and sinusoidal channels.In contrast,the formation of polymethylbenzenes was significantly suppressed at the acid sites in the sinusoidal and straight channels,whereas the alkene cycle can occur at all three types of acid sites with similar energy barriers and probabilities.Consequently,the catalytic performance of H‐ZSM‐5 zeolite for MTO conversion,including activity and product selectivity,can be regulated properly through the purposive alteration of the acid site distribution,viz.,the location of Al in the zeolite framework.This study helps to elucidate the relation between the catalytic performance of different acid sites in the H‐ZSM‐5 zeolite framework for MTO conversion,which should greatly benefit the design of efficient catalyst for methanol conversion.
文摘A highly efficient synthesis of 2-amino-N-substituted-benzamides was performed by the condensation ofisatoic anhydride with several amines in solvent-free conditions under microwave irradiation. H-Y-zeolites induced heterocyclization of these products with ortho-esters under similar conditions afforded the relevant substituted-quinazolin-4(3H)ones in high yields.
文摘The most prestigious catalyst applied in natural gas (methane) non-oxidative conversion to petrochemicals is 6%Mo/H-ZSM-5. Chromium, molybdenum and tungsten are the group VI metals. Hence, in this work, 6%Mo/H-ZSM-5 was correlated with 3%Cr+3%Mo/H-ZSM-5 and 3%W+3%Mo/H-ZSM-5 as catalysts to examine their promoting or inhibiting effects on the various reactions taking place during methane conversion. The catalytic activities of these catalysts were tested in a continuous flow fixed bed reactor at 700℃ and a GHSV of 1500 ml·g^-1·h^-1 Characterization of the catalysts using XRD, TGA and TPD were investigated. XRD and NH3-TPD showed greater interaction between the W-phase and the Bronsted acid sites in the channels of the zeolite than between Cr-phase and the acid sites in the zeolite.
文摘H-type zeolites( HY, Hβ, and HM) were synthesized and characterized by XRD, NH3-TPD, and Py-IR. Selectively catalytic alkylation of naphthalene with n-hexanol to hexyl-naphthalene over the zeolites was carried out. The experimental results show that the catalytic activities of the zeolites are mainly determined by their acid properties and pore structures. The larger the pore diameter is, the higher the catalytic activity is. NH3-TPD profiles show that Hβ and HM have lower acid strengths than HY. HY has both the highest activity and highest selectivity for the hexylnaphthalene. Higher reaction temperatures and longer reaction time are beneficial to the production of β-hexyl-naphthalene over the HY zeolite.
文摘Binary gas mixture adsorption equilibrium data for the ethylene-carbon dioxide system were obtained for cation exchanged forms of ZSM5 (Li^+, Na^+, K^+, Rb^+, Mg^(+2), Ca^(+2), Sr^(+2), and Ba^(+2)) for the gas phase CO_2 mole fracion of 0.766 at 308K and 101. 3kPa. The experimental adsorption phase diagrams were obtained for CO_2-C_2H_4 on NaZSM5 and MgZSM5. Single component adsorption isotherms for CO_2 and C_2H_4 were also obtained for these two zeolites. The single component data were used to obtain parameters derived in the vacancy solution model (VSM) and the statistical thermodynamic model(STM). These parameters were, in turn, used to predict binary mixture isotherms for these two zeolites. The agreement between experimental data and predicted value is generally good.
文摘The present paper covers an X-ray photoelectron spectroscopic (XPS) method proposed for identifying Bronsted and Lewis acidic sites in zeolites and estimating acidic strength of these sites. It was found that the adsorption of pyridine on different acidic sites of H[M]-ZSM-5 zeolites exhibited three peaks: A (402.20-401.30 eV), B (400.95-400.40 eV) and C (399. 40-399. 10 eV). The peaks A and B are assigned to the N(?) level of pyridine adsorbed on Bronsted and Lewis acidic sites, and peak C is assigned to the N(?) level of pyridine adsorbed on a weak Lewis site and/or strongly physisorbed pyridine, respectively. The comparison of the ratio of the Bronsted and Lewis acidic sites determined from the relative intensities of the N(?), peaks with IR spectroscopic data shows that there is an inhomoge-neous distribution of Bronsted and Lewis acidic sites in H[M]-ZSM-5 zeolites. The N(?), binding energies of pyridine adsorbed on these zeolites directly reflect acidic strength, and these results are in good agreement with those observed in NH3-TPD experiments.
文摘The ruthenium hydrido-carbonyl cluster in NaY zeolite,synthesized by the reaction of Ru3(CO)(12)/NaY with hydrogen,was characterized by FTIR,UV-VIS and EXAFS spectroscopies.
文摘he effects of reaction temperature , flow rate of carrier gas , space velocity andbenzene to propene ratio on the alkylation of benzene with propene over Hβ zeolitewere investigated. At lower flow rate of carrier gas and space velocity, higher ben-zene to propene ratio the formation of cumene is favoured due to the difference be-tween rates of reactions of the alkylation of benzene (or cumene) with propene andthe alkyltranslation of diisopropylbenzene with benzene. The propylbenzene is pro-duced directly by the alkylation of benzene with propene.
文摘A new zinc hydrogen phosphite C4H8N2H4·Zn(HPO3)2 was prepared by hydrothermal method in the presence of piperazine as a structure-directing agent and the crystal structure was determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, IR, ICP, elemental analysis and TG analysis. This compound has one-dimensional anionic chains containing four-membered rings built from corner-sharing linked alternating ZnO4 tetrahedra and HPO3 pseudo pyramids. The zinc hydrogen phosphite chains are interacted with the templates of diprotonated piperazine by N—H…O hydrogen bond. Crystal data for C4H8N2H4·Zn(HPO3)2∶monoclinic, space group C2/c. a=1.774 8(2) nm, b=0.724 28(9) nm, c=0.880 87(11) nm, β= 105.345(3)°, V=1.091 9(2) nm 3, Z=4, Dc=1^907 Mg/m 3, R1=0.022 9, wR2=0.058 8.