The title compound H2SiW12O40·(CH3)2NH was synthesized in mixed solvent of aqueous and acetonitrile, and its crystal structure had been determined using single crystal X ray diffraction. The crystal belongs to mo...The title compound H2SiW12O40·(CH3)2NH was synthesized in mixed solvent of aqueous and acetonitrile, and its crystal structure had been determined using single crystal X ray diffraction. The crystal belongs to monoclinic, space group C2/m, a=2.0654(4)nm, b=1.3306(3)nm, c=1.3194(3)nm, β=119.59(3)°, V=3.1531(11)nm3, Dc=3.606Mg·m-3, Z=2, R=0.0462, Rw=0.0836. The title compound comprises of a 2+ unit, a polyanion and a free (CH3)2NH molecule. The ESR spectrum of the title compound shows that charge transfer between organic groups and polyanion takes place under irradiation of the sunlight in solid state. The TG study of the title compound shows that it had four stages of the weight loss, and the increase of the decomposition temperature for the polyanion shows that the stability of the polyanion was enhanced due to the influence of Zn2+ ion. CCDC:175866.展开更多
The new complex [Ce(CH2=C(CH3)COO)2(NO3)(Phen)]2 was prepared in ethanol- a queous solution with 8- hydroxyquinoline as the acidity regulator. Its crystal structure was determined by X- ray diffraction analysis. The t...The new complex [Ce(CH2=C(CH3)COO)2(NO3)(Phen)]2 was prepared in ethanol- a queous solution with 8- hydroxyquinoline as the acidity regulator. Its crystal structure was determined by X- ray diffraction analysis. The title complex is t riclinic, space group P1, a=1.00832(3)nm, b=1.02858(8)nm, c=1.12350(8)nm, α =11 3.9250(10)° , β =103.8210(10)° , γ =81.4650(10)° , V=1.03252(14)nm3, Z=1, D c=1.700g· cm- 3, F(000)=522. The coordination number of Ce3+ is nine. CCDC: 211278.展开更多
Y_2(p-CH_3C_6H_4COO)_6(C_(12)H_8N_2)_2, Mr=1349.08, triclinic, space group P, a=13.00(3), b=19.743(2), c=12.754(3)A, α=97.94(1), β=106.24(2), γ=91.66(1)°, V=3177(1)~3, Z=2, Dc=1.41gcm^(-3), λ(MoKα)=0.71069, ...Y_2(p-CH_3C_6H_4COO)_6(C_(12)H_8N_2)_2, Mr=1349.08, triclinic, space group P, a=13.00(3), b=19.743(2), c=12.754(3)A, α=97.94(1), β=106.24(2), γ=91.66(1)°, V=3177(1)~3, Z=2, Dc=1.41gcm^(-3), λ(MoKα)=0.71069, μ=18.92 cm^(-1), F(ooo)=1384, T=295K, final R=0.073 for 6504 observed reflections with Ⅰ>36(Ⅰ). There are two nonidentical binuclear molecules with different bridging connection patterns in a cell. One has four bridging carboxyl groups bound two Y(Ⅲ) ions and another only has two. The Y-Y distance is 4.196 for the former and 5.302 for the latter respectively.展开更多
High efficient lead halide perovskites with wide-color gamut properties have emerged as new candidates for backlight displays.However,the toxicity of lead and the instability of halide perovskites greatly limit their ...High efficient lead halide perovskites with wide-color gamut properties have emerged as new candidates for backlight displays.However,the toxicity of lead and the instability of halide perovskites greatly limit their practical applications.Herein,the luminescent powders of[(CH_(3))4N]2MnBr_(4)and[(CH_(3))4N]MnBr3 were synthesized via a simple yet robust solvent evaporation method.[(CH_(3))4N]2MnBr_(4)with tetrahedral coordination Mn^(2+)and[(CH_(3))4N]MnBr3 with octahedral coordination Mn^(2+)show green at 517 nm and red emission peaks at 620 nm,respectively,originating from the^(4)T1-^(6)A_(1)transition of Mn^(2+).To enhance optical of manganese halide via effective alloying,Zn^(2+)-doped[(CH_(3))4N]2MnBr_(4)was successfully prepared,and the quantum efficiency of[(CH_(3))_(4)N]_(2)Mn_(0.6)Zn_(0.4)Br_(4)was as high as 65%.Furthermore,[(CH_(3))4N]2Mn0.6Zn0.4Br_(4)exhibits better optical and thermal stability compared to[(CH_(3))4N]2MnBr_(4).[(CH_(3))_(4)N]_(2)Mn_(0.6)Zn_(0.4)Br_(4)@CsPbBr_(1.2)I_(1.8)light conversion films with different green-to-red ratios are placed in backlight display devices,and their color gamut exceeds 106%of the National Television Standards Committee(NTSC)1953 standard,which is superior to the currently reported Mn-based perovskite.This work broadly shows that the[(CH_(3))_(4)N]_(2)Mn_(0.6)Zn_(0.4)Br_(4)will provide effective route to fabricate stable and high-performance lead-free liquid crystal displays.展开更多
文摘The title compound H2SiW12O40·(CH3)2NH was synthesized in mixed solvent of aqueous and acetonitrile, and its crystal structure had been determined using single crystal X ray diffraction. The crystal belongs to monoclinic, space group C2/m, a=2.0654(4)nm, b=1.3306(3)nm, c=1.3194(3)nm, β=119.59(3)°, V=3.1531(11)nm3, Dc=3.606Mg·m-3, Z=2, R=0.0462, Rw=0.0836. The title compound comprises of a 2+ unit, a polyanion and a free (CH3)2NH molecule. The ESR spectrum of the title compound shows that charge transfer between organic groups and polyanion takes place under irradiation of the sunlight in solid state. The TG study of the title compound shows that it had four stages of the weight loss, and the increase of the decomposition temperature for the polyanion shows that the stability of the polyanion was enhanced due to the influence of Zn2+ ion. CCDC:175866.
文摘The new complex [Ce(CH2=C(CH3)COO)2(NO3)(Phen)]2 was prepared in ethanol- a queous solution with 8- hydroxyquinoline as the acidity regulator. Its crystal structure was determined by X- ray diffraction analysis. The title complex is t riclinic, space group P1, a=1.00832(3)nm, b=1.02858(8)nm, c=1.12350(8)nm, α =11 3.9250(10)° , β =103.8210(10)° , γ =81.4650(10)° , V=1.03252(14)nm3, Z=1, D c=1.700g· cm- 3, F(000)=522. The coordination number of Ce3+ is nine. CCDC: 211278.
文摘Y_2(p-CH_3C_6H_4COO)_6(C_(12)H_8N_2)_2, Mr=1349.08, triclinic, space group P, a=13.00(3), b=19.743(2), c=12.754(3)A, α=97.94(1), β=106.24(2), γ=91.66(1)°, V=3177(1)~3, Z=2, Dc=1.41gcm^(-3), λ(MoKα)=0.71069, μ=18.92 cm^(-1), F(ooo)=1384, T=295K, final R=0.073 for 6504 observed reflections with Ⅰ>36(Ⅰ). There are two nonidentical binuclear molecules with different bridging connection patterns in a cell. One has four bridging carboxyl groups bound two Y(Ⅲ) ions and another only has two. The Y-Y distance is 4.196 for the former and 5.302 for the latter respectively.
基金supported by the National Natural Science Foundation of China(Nos.51872207 and 52072271).
文摘High efficient lead halide perovskites with wide-color gamut properties have emerged as new candidates for backlight displays.However,the toxicity of lead and the instability of halide perovskites greatly limit their practical applications.Herein,the luminescent powders of[(CH_(3))4N]2MnBr_(4)and[(CH_(3))4N]MnBr3 were synthesized via a simple yet robust solvent evaporation method.[(CH_(3))4N]2MnBr_(4)with tetrahedral coordination Mn^(2+)and[(CH_(3))4N]MnBr3 with octahedral coordination Mn^(2+)show green at 517 nm and red emission peaks at 620 nm,respectively,originating from the^(4)T1-^(6)A_(1)transition of Mn^(2+).To enhance optical of manganese halide via effective alloying,Zn^(2+)-doped[(CH_(3))4N]2MnBr_(4)was successfully prepared,and the quantum efficiency of[(CH_(3))_(4)N]_(2)Mn_(0.6)Zn_(0.4)Br_(4)was as high as 65%.Furthermore,[(CH_(3))4N]2Mn0.6Zn0.4Br_(4)exhibits better optical and thermal stability compared to[(CH_(3))4N]2MnBr_(4).[(CH_(3))_(4)N]_(2)Mn_(0.6)Zn_(0.4)Br_(4)@CsPbBr_(1.2)I_(1.8)light conversion films with different green-to-red ratios are placed in backlight display devices,and their color gamut exceeds 106%of the National Television Standards Committee(NTSC)1953 standard,which is superior to the currently reported Mn-based perovskite.This work broadly shows that the[(CH_(3))_(4)N]_(2)Mn_(0.6)Zn_(0.4)Br_(4)will provide effective route to fabricate stable and high-performance lead-free liquid crystal displays.